Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,54 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Training procedure
|
5 |
|
6 |
|
@@ -14,7 +62,11 @@ The following `bitsandbytes` quantization config was used during training:
|
|
14 |
- bnb_4bit_quant_type: nf4
|
15 |
- bnb_4bit_use_double_quant: False
|
16 |
- bnb_4bit_compute_dtype: float16
|
17 |
-
### Framework versions
|
18 |
|
19 |
|
|
|
20 |
- PEFT 0.4.0
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
---
|
4 |
+
---
|
5 |
+
license: apache-2.0
|
6 |
+
base_model: meta-llama/Llama-2-7b-hf
|
7 |
+
datasets:
|
8 |
+
- cfilt/iitb-english-hindi
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
- hi
|
12 |
+
metrics:
|
13 |
+
- bleu
|
14 |
+
---
|
15 |
+
|
16 |
+
|
17 |
+
# Finetuning
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the IITB English to Hindi dataset.
|
20 |
+
source group: English
|
21 |
+
target group: Hindi
|
22 |
+
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
meta-llama/Llama-2-7b-hf finetuned for translation task in Hindi language
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
cfilt/iitb-english-hindi
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- num_train_epochs=1
|
36 |
+
- per_device_train_batch_size=4
|
37 |
+
- per_device_eval_batch_size = 4
|
38 |
+
- gradient_accumulation_steps=1
|
39 |
+
- optim="paged_adamw_32bit"
|
40 |
+
- learning_rate=2e-4
|
41 |
+
- weight_decay=0.001
|
42 |
+
- fp16=True
|
43 |
+
- max_grad_norm=0.3
|
44 |
+
- max_steps=-1
|
45 |
+
- warmup_ratio=0.03
|
46 |
+
- group_by_length=True
|
47 |
+
- lr_scheduler_type="constant"
|
48 |
+
### Benchamark Evaluation
|
49 |
+
- BLEU score on Tatoeba: 12.605968092174914
|
50 |
+
- BLUE score on IN-22: 25.893729634826876
|
51 |
+
|
52 |
## Training procedure
|
53 |
|
54 |
|
|
|
62 |
- bnb_4bit_quant_type: nf4
|
63 |
- bnb_4bit_use_double_quant: False
|
64 |
- bnb_4bit_compute_dtype: float16
|
|
|
65 |
|
66 |
|
67 |
+
### Framework versions
|
68 |
- PEFT 0.4.0
|
69 |
+
- Transformers 4.42.3
|
70 |
+
- Pytorch 2.1.2
|
71 |
+
- Datasets 2.20.0
|
72 |
+
- Tokenizers 0.19.1
|