Create handler.py
Browse files- handler.py +44 -0
handler.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import transformers
|
3 |
+
from typing import Dict, Any
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
+
|
6 |
+
|
7 |
+
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
8 |
+
|
9 |
+
class EndpointHandler:
|
10 |
+
def __init__(self, model_path: str = ""):
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
13 |
+
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_path,
|
16 |
+
return_dict=True,
|
17 |
+
device_map='auto',
|
18 |
+
load_in_8bit=True,
|
19 |
+
torch_dtype=dtype,
|
20 |
+
trust_remote_code=True)
|
21 |
+
|
22 |
+
|
23 |
+
self.pipeline = transformers.pipeline(
|
24 |
+
"text-generation",
|
25 |
+
model=model,
|
26 |
+
tokenizer=tokenizer,
|
27 |
+
temperature=0.8,
|
28 |
+
repetition_penalty=1.1,
|
29 |
+
max_new_tokens=1000,
|
30 |
+
pad_token_id=tokenizer.pad_token_id,
|
31 |
+
eos_token_id=tokenizer.eos_token_id
|
32 |
+
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
37 |
+
prompt = data.pop("inputs", data)
|
38 |
+
|
39 |
+
llm_response = self.pipeline(
|
40 |
+
prompt,
|
41 |
+
return_full_text=False
|
42 |
+
)
|
43 |
+
|
44 |
+
return llm_response[0]['generated_text'].strip()
|