|
--- |
|
license: other |
|
base_model: nvidia/mit-b5 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: ecc_segformerv3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ecc_segformerv3 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1344 |
|
- Mean Iou: 0.0005 |
|
- Mean Accuracy: 0.0010 |
|
- Overall Accuracy: 0.0010 |
|
- Accuracy Background: nan |
|
- Accuracy Crack: 0.0010 |
|
- Iou Background: 0.0 |
|
- Iou Crack: 0.0010 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0006 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 5000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Crack | Iou Background | Iou Crack | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:| |
|
| 0.1306 | 1.0 | 1001 | 0.1114 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | |
|
| 0.107 | 2.0 | 2002 | 0.1238 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 | |
|
| 0.1285 | 3.0 | 3003 | 0.1631 | 0.0024 | 0.0049 | 0.0049 | nan | 0.0049 | 0.0 | 0.0048 | |
|
| 0.0887 | 4.0 | 4004 | 0.1083 | 0.0002 | 0.0003 | 0.0003 | nan | 0.0003 | 0.0 | 0.0003 | |
|
| 0.0828 | 5.0 | 5000 | 0.1344 | 0.0005 | 0.0010 | 0.0010 | nan | 0.0010 | 0.0 | 0.0010 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0.dev0 |
|
- Pytorch 2.0.1+cpu |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|