Mistral_7B_Fact_U / README.md
rishavranaut's picture
rishavranaut/Mistral_7B_Fact_U
e1758bb verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: Mistral_7B_Fact_U
    results: []

Mistral_7B_Fact_U

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6060
  • Accuracy: 0.7941
  • Precision: 0.8486
  • Recall: 0.7353
  • F1 score: 0.7879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Accuracy F1 score Precision Recall Validation Loss
1.4759 0.2509 200 0.6494 0.6674 0.6586 0.6765 1.2749
1.033 0.5019 400 0.6682 0.5841 0.8390 0.4480 1.1062
0.8323 0.7528 600 0.7094 0.7487 0.6802 0.8326 0.6781
0.6895 1.0038 800 0.9914 0.7529 0.9113 0.5814 0.7099
0.5692 1.2547 1000 0.5985 0.7741 0.7962 0.7602 0.7778
0.5514 1.5056 1200 0.6206 0.7259 0.6961 0.8394 0.7610
0.5011 1.7566 1400 0.5612 0.7835 0.8377 0.7240 0.7767
0.4772 2.0075 1600 0.7216 0.7482 0.7446 0.7851 0.7643
0.4001 2.2585 1800 0.8057 0.7106 0.6782 0.8439 0.7520
0.3915 2.5094 2000 0.6729 0.7706 0.7800 0.7783 0.7792
0.3691 2.7604 2200 0.6833 0.7624 0.7679 0.7783 0.7730
0.387 3.0113 2400 0.6916 0.7529 0.7489 0.7896 0.7687
0.2261 3.2622 2600 1.2210 0.7988 0.8575 0.7353 0.7917
0.236 3.5132 2800 1.0130 0.7965 0.8645 0.7217 0.7867
0.2332 3.7641 3000 1.3376 0.7412 0.7229 0.8145 0.7660
0.2334 4.0151 3200 1.2199 0.7847 0.8381 0.7262 0.7782
0.1039 4.2660 3400 1.4260 0.7941 0.8380 0.7489 0.7909
0.0987 4.5169 3600 1.5102 0.7706 0.7839 0.7715 0.7777
0.0887 4.7679 3800 1.6060 0.7941 0.8486 0.7353 0.7879

Framework versions

  • PEFT 0.11.1
  • Transformers 4.44.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1