metadata
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 47.1323
flan-t5-base-samsum
This model is a fine-tuned version of google/flan-t5-base on the samsum dataset. It achieves the following results on the evaluation set:
- Loss: 1.3724
- Rouge1: 47.1323
- Rouge2: 23.6343
- Rougel: 39.907
- Rougelsum: 43.4826
- Gen Len: 17.3260
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.4541 | 1.0 | 1842 | 1.3788 | 46.6486 | 23.2493 | 39.359 | 43.0174 | 17.4469 |
1.3467 | 2.0 | 3684 | 1.3682 | 47.1945 | 23.7803 | 40.0316 | 43.5134 | 17.2295 |
1.2945 | 3.0 | 5526 | 1.3724 | 47.1323 | 23.6343 | 39.907 | 43.4826 | 17.3260 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3