metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-medium.en
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_myst
type: rishabhjain16/infer_myst
config: en
split: test
metrics:
- type: wer
value: 12.1
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_pfs
type: rishabhjain16/infer_pfs
config: en
split: test
metrics:
- type: wer
value: 31.29
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_cmu
type: rishabhjain16/infer_cmu
config: en
split: test
metrics:
- type: wer
value: 2.27
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_pf_italian
type: rishabhjain16/infer_pf_italian
config: en
split: test
metrics:
- type: wer
value: 77.38
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_pf_german
type: rishabhjain16/infer_pf_german
config: en
split: test
metrics:
- type: wer
value: 125.37
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_pf_swedish
type: rishabhjain16/infer_pf_swedish
config: en
split: test
metrics:
- type: wer
value: 138.95
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/infer_so_chinese
type: rishabhjain16/infer_so_chinese
config: en
split: test
metrics:
- type: wer
value: 33.32
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: rishabhjain16/libritts_dev_clean
type: rishabhjain16/libritts_dev_clean
config: en
split: test
metrics:
- type: wer
value: 6.13
name: WER
openai/whisper-medium.en
This model is a fine-tuned version of openai/whisper-medium.en on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3763
- Wer: 11.2832
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2381 | 0.12 | 500 | 0.2625 | 11.4877 |
0.1332 | 1.1 | 1000 | 0.2451 | 11.4078 |
0.1097 | 2.08 | 1500 | 0.2610 | 11.5359 |
0.0412 | 3.06 | 2000 | 0.2804 | 10.9598 |
0.0219 | 4.04 | 2500 | 0.3426 | 10.9669 |
0.0139 | 5.02 | 3000 | 0.3503 | 11.3325 |
0.0086 | 6.0 | 3500 | 0.3761 | 11.0222 |
0.0017 | 6.13 | 4000 | 0.3763 | 11.2832 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2