on-vits2-multi-tts-v1 / inference_ms_cpu.py
rippertnt's picture
Upload inference_ms_cpu.py
8d763f2 verified
raw
history blame
2.7 kB
## VCTK
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import time
from scipy.io.wavfile import write
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
print(text, text_norm)
text_norm = torch.LongTensor(text_norm)
return text_norm
LANG = 'ru'
CONFIG_PATH = f"./configs/{LANG}_base.json"
MODEL_PATH = f"./logs/{LANG}_base/G_40000.pth"
#TEXT = "I am artificial intelligent voice made by circulus."
#TEXT = "저는 서큘러스의 AI Voice 모델입니다. 오늘도 즐거운하루 보내세요."
TEXT = "привет. Я президент Путин, и мне нравятся советские лидеры Сталин и Ленин."
#TEXT = "Xin chào. Tôi là Tổng thống Putin và tôi thích các nhà lãnh đạo Liên Xô Stalin và Lenin."
#TEXT = "สวัสดี. ผมเป็นประธานาธิบดีปูติน และผมชอบผู้นำโซเวียตอย่างสตาลินและเลนิน"
#TEXT = "Halo. Saya Presiden Putin, dan saya menyukai pemimpin Soviet Stalin dan Lenin."
hps = utils.get_hparams_from_file(CONFIG_PATH)
if (
"use_mel_posterior_encoder" in hps.model.keys()
and hps.model.use_mel_posterior_encoder == True
):
print("Using mel posterior encoder for VITS2")
posterior_channels = 80 # vits2
hps.data.use_mel_posterior_encoder = True
else:
print("Using lin posterior encoder for VITS1")
posterior_channels = hps.data.filter_length // 2 + 1
hps.data.use_mel_posterior_encoder = False
net_g = SynthesizerTrn(
len(symbols),
posterior_channels,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model
)
_ = net_g.eval()
_ = utils.load_checkpoint(MODEL_PATH, net_g, None)
stn_tst = get_text(TEXT, hps)
with torch.no_grad():
for i in range(0,hps.data.n_speakers):
start = time.time()
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
sid = torch.LongTensor([i])
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
sid=sid,
noise_scale=0.667,
noise_scale_w=0.8,
length_scale=1,
)[0][0, 0]
.data
.float()
.numpy()
)
print(i, time.time() - start)
write(data=audio, rate=hps.data.sampling_rate, filename=f"test_{LANG}_{i}.wav")