Upload inference_ms_cpu.py
Browse files- inference_ms_cpu.py +80 -0
inference_ms_cpu.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## VCTK
|
2 |
+
import torch
|
3 |
+
|
4 |
+
import commons
|
5 |
+
import utils
|
6 |
+
from models import SynthesizerTrn
|
7 |
+
from text.symbols import symbols
|
8 |
+
from text import text_to_sequence
|
9 |
+
import time
|
10 |
+
|
11 |
+
from scipy.io.wavfile import write
|
12 |
+
|
13 |
+
|
14 |
+
def get_text(text, hps):
|
15 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
16 |
+
if hps.data.add_blank:
|
17 |
+
text_norm = commons.intersperse(text_norm, 0)
|
18 |
+
print(text, text_norm)
|
19 |
+
text_norm = torch.LongTensor(text_norm)
|
20 |
+
return text_norm
|
21 |
+
|
22 |
+
LANG = 'ru'
|
23 |
+
CONFIG_PATH = f"./configs/{LANG}_base.json"
|
24 |
+
MODEL_PATH = f"./logs/{LANG}_base/G_40000.pth"
|
25 |
+
#TEXT = "I am artificial intelligent voice made by circulus."
|
26 |
+
#TEXT = "저는 서큘러스의 AI Voice 모델입니다. 오늘도 즐거운하루 보내세요."
|
27 |
+
TEXT = "привет. Я президент Путин, и мне нравятся советские лидеры Сталин и Ленин."
|
28 |
+
#TEXT = "Xin chào. Tôi là Tổng thống Putin và tôi thích các nhà lãnh đạo Liên Xô Stalin và Lenin."
|
29 |
+
#TEXT = "สวัสดี. ผมเป็นประธานาธิบดีปูติน และผมชอบผู้นำโซเวียตอย่างสตาลินและเลนิน"
|
30 |
+
#TEXT = "Halo. Saya Presiden Putin, dan saya menyukai pemimpin Soviet Stalin dan Lenin."
|
31 |
+
|
32 |
+
hps = utils.get_hparams_from_file(CONFIG_PATH)
|
33 |
+
|
34 |
+
if (
|
35 |
+
"use_mel_posterior_encoder" in hps.model.keys()
|
36 |
+
and hps.model.use_mel_posterior_encoder == True
|
37 |
+
):
|
38 |
+
print("Using mel posterior encoder for VITS2")
|
39 |
+
posterior_channels = 80 # vits2
|
40 |
+
hps.data.use_mel_posterior_encoder = True
|
41 |
+
else:
|
42 |
+
print("Using lin posterior encoder for VITS1")
|
43 |
+
posterior_channels = hps.data.filter_length // 2 + 1
|
44 |
+
hps.data.use_mel_posterior_encoder = False
|
45 |
+
|
46 |
+
net_g = SynthesizerTrn(
|
47 |
+
len(symbols),
|
48 |
+
posterior_channels,
|
49 |
+
hps.train.segment_size // hps.data.hop_length,
|
50 |
+
n_speakers=hps.data.n_speakers,
|
51 |
+
**hps.model
|
52 |
+
)
|
53 |
+
_ = net_g.eval()
|
54 |
+
|
55 |
+
_ = utils.load_checkpoint(MODEL_PATH, net_g, None)
|
56 |
+
|
57 |
+
stn_tst = get_text(TEXT, hps)
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
|
61 |
+
for i in range(0,hps.data.n_speakers):
|
62 |
+
start = time.time()
|
63 |
+
x_tst = stn_tst.unsqueeze(0)
|
64 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
65 |
+
sid = torch.LongTensor([i])
|
66 |
+
audio = (
|
67 |
+
net_g.infer(
|
68 |
+
x_tst,
|
69 |
+
x_tst_lengths,
|
70 |
+
sid=sid,
|
71 |
+
noise_scale=0.667,
|
72 |
+
noise_scale_w=0.8,
|
73 |
+
length_scale=1,
|
74 |
+
)[0][0, 0]
|
75 |
+
.data
|
76 |
+
.float()
|
77 |
+
.numpy()
|
78 |
+
)
|
79 |
+
print(i, time.time() - start)
|
80 |
+
write(data=audio, rate=hps.data.sampling_rate, filename=f"test_{LANG}_{i}.wav")
|