|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-multinews |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-multinews |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6760 |
|
- Rouge1: 12.0734 |
|
- Rouge2: 4.3967 |
|
- Rougel: 10.3798 |
|
- Rougelsum: 11.183 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 4.0379 | 1.0 | 1875 | 2.8647 | 11.7472 | 3.9041 | 10.0104 | 10.9935 | |
|
| 3.1006 | 2.0 | 3750 | 2.7921 | 11.9174 | 4.1568 | 10.1817 | 11.1292 | |
|
| 2.9625 | 3.0 | 5625 | 2.7340 | 11.8991 | 4.2439 | 10.2099 | 11.0833 | |
|
| 2.8808 | 4.0 | 7500 | 2.7087 | 12.2156 | 4.3539 | 10.4789 | 11.3807 | |
|
| 2.8298 | 5.0 | 9375 | 2.6980 | 12.0815 | 4.391 | 10.3708 | 11.2082 | |
|
| 2.7949 | 6.0 | 11250 | 2.6671 | 12.1477 | 4.4187 | 10.4061 | 11.2805 | |
|
| 2.7709 | 7.0 | 13125 | 2.6780 | 12.216 | 4.4787 | 10.4787 | 11.3018 | |
|
| 2.7609 | 8.0 | 15000 | 2.6760 | 12.0734 | 4.3967 | 10.3798 | 11.183 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|