|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-multinews |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-multinews |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5337 |
|
- Rouge1: 21.2625 |
|
- Rouge2: 9.0676 |
|
- Rougel: 18.6959 |
|
- Rougelsum: 19.0326 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 4.4067 | 1.0 | 1875 | 2.7776 | 20.7695 | 8.5464 | 18.4037 | 18.6862 | |
|
| 3.0128 | 2.0 | 3750 | 2.6822 | 21.0579 | 8.7229 | 18.5264 | 18.832 | |
|
| 2.7999 | 3.0 | 5625 | 2.5896 | 21.1361 | 8.7677 | 18.5391 | 18.8411 | |
|
| 2.6794 | 4.0 | 7500 | 2.5429 | 21.2314 | 8.9749 | 18.7468 | 19.036 | |
|
| 2.5963 | 5.0 | 9375 | 2.5555 | 21.2005 | 8.8569 | 18.7536 | 19.0381 | |
|
| 2.5401 | 6.0 | 11250 | 2.5464 | 21.1559 | 8.9794 | 18.572 | 18.9026 | |
|
| 2.5099 | 7.0 | 13125 | 2.5313 | 21.0841 | 9.0057 | 18.526 | 18.8667 | |
|
| 2.488 | 8.0 | 15000 | 2.5337 | 21.2625 | 9.0676 | 18.6959 | 19.0326 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |
|
|