ridger Andron00e commited on
Commit
2d73a4b
1 Parent(s): d179e8b

Created README.md from the official repository (#1)

Browse files

- Created README.md from the official repository (78e847a035cae4b59cd0997de4f548554a57c61a)


Co-authored-by: Andrii Semenov <Andron00e@users.noreply.huggingface.co>

Files changed (1) hide show
  1. RADME.md +51 -0
RADME.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # MatMul-Free LL
5
+
6
+ <!-- Provide a quick summary of what the model is/does. -->
7
+
8
+ ## Model Details
9
+
10
+ [[Paper](https://arxiv.org/abs/2406.02528)] [[Code](https://github.com/ridgerchu/matmulfreellm/tree/master)]
11
+
12
+ MatMul-Free LM is a language model architecture that eliminates the need for Matrix Multiplication (MatMul) operations.
13
+ This repository provides an implementation of MatMul-Free LM that is compatible with the 🤗 Transformers library.
14
+
15
+ ![MatMul-Free LM](https://raw.githubusercontent.com/ridgerchu/matmulfreellm/master/__assets__/main.png)
16
+
17
+ ## Scaling Law
18
+
19
+ We evaluate how the scaling law fits to the 370M, 1.3B and 2.7B parameter models in both Transformer++ and our model.
20
+ For a fair comparison, each operation is treated identically, though our model uses more efficient ternary weights in some layers.
21
+ Interestingly, the scaling projection for our model exhibits a steeper descent compared to Transformer++,
22
+ suggesting our architecture is more efficient in leveraging additional compute to improve performance.
23
+
24
+ ![Scaling Law](https://raw.githubusercontent.com/ridgerchu/matmulfreellm/master/__assets__/scaling_law.png)
25
+
26
+ ## Usage
27
+
28
+ We provide the implementations of models that are compatible with 🤗 Transformers library.
29
+ Here's an example of how to initialize a model from the default configs in ```matmulfreelm```:
30
+ This is a huggingface-compatible library that you can use such command to initialize the model with huggingface ```AutoModel```:
31
+
32
+ ```shell
33
+ pip install transformers
34
+ pip install -U git+https://github.com/ridgerchu/matmulfreellm
35
+ ```
36
+
37
+ ```python
38
+ from mmfreelm.models import HGRNBitConfig
39
+ from mmfreelm.layers import hgrn_bit
40
+
41
+ from transformers import AutoModelForCausalLM
42
+ model = AutoModelForCausalLM.from_pretrained("ridger/MMfreeLM-2.7B")
43
+ ```
44
+
45
+ ## Pre-trained Model Zoo
46
+
47
+ | Model Size | Layer | Hidden dimension | Trained tokens |
48
+ | [370M](https://huggingface.co/ridger/MMfreeLM-370M) | 24 | 1024 | 15B |
49
+ | :---: | :---: | :---: | :---: |
50
+ | [1.3B](https://huggingface.co/ridger/MMfreeLM-1.3B) | 24 | 2048 | 100B |
51
+ | [2.7B](https://huggingface.co/ridger/MMfreeLM-2.7B) | 32 | 2560 | 100B |