layoutlm-funsd / README.md
riasharma's picture
End of training
80bebfc
|
raw
history blame
9.37 kB
metadata
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6624
  • Answer: {'precision': 0.7003222341568206, 'recall': 0.8059332509270705, 'f1': 0.7494252873563217, 'number': 809}
  • Header: {'precision': 0.3148148148148148, 'recall': 0.2857142857142857, 'f1': 0.29955947136563876, 'number': 119}
  • Question: {'precision': 0.7602441150828247, 'recall': 0.8187793427230047, 'f1': 0.7884267631103073, 'number': 1065}
  • Overall Precision: 0.7127
  • Overall Recall: 0.7817
  • Overall F1: 0.7456
  • Overall Accuracy: 0.8098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8207 1.0 10 1.6331 {'precision': 0.01676829268292683, 'recall': 0.013597033374536464, 'f1': 0.015017064846416382, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.21189024390243902, 'recall': 0.13051643192488263, 'f1': 0.16153399186519465, 'number': 1065} 0.1143 0.0753 0.0908 0.3429
1.4867 2.0 20 1.3144 {'precision': 0.13937282229965156, 'recall': 0.14833127317676142, 'f1': 0.14371257485029942, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4092178770949721, 'recall': 0.5502347417840375, 'f1': 0.4693632358830597, 'number': 1065} 0.3079 0.3542 0.3294 0.5753
1.1706 3.0 30 1.0082 {'precision': 0.4507042253521127, 'recall': 0.553770086526576, 'f1': 0.4969495285635052, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5885810243492863, 'recall': 0.6582159624413145, 'f1': 0.6214539007092199, 'number': 1065} 0.5237 0.5765 0.5488 0.6721
0.8874 4.0 40 0.8115 {'precision': 0.6029106029106029, 'recall': 0.7169344870210136, 'f1': 0.6549971767363072, 'number': 809} {'precision': 0.05714285714285714, 'recall': 0.01680672268907563, 'f1': 0.025974025974025972, 'number': 119} {'precision': 0.649792531120332, 'recall': 0.7352112676056338, 'f1': 0.6898678414096917, 'number': 1065} 0.6199 0.6849 0.6508 0.7517
0.7072 5.0 50 0.7206 {'precision': 0.6341948310139165, 'recall': 0.788627935723115, 'f1': 0.7030303030303031, 'number': 809} {'precision': 0.18032786885245902, 'recall': 0.09243697478991597, 'f1': 0.12222222222222223, 'number': 119} {'precision': 0.696551724137931, 'recall': 0.7586854460093897, 'f1': 0.7262921348314607, 'number': 1065} 0.6542 0.7311 0.6905 0.7725
0.5896 6.0 60 0.6813 {'precision': 0.6571428571428571, 'recall': 0.796044499381953, 'f1': 0.7199552822806037, 'number': 809} {'precision': 0.1746031746031746, 'recall': 0.09243697478991597, 'f1': 0.12087912087912087, 'number': 119} {'precision': 0.7217981340118744, 'recall': 0.7990610328638498, 'f1': 0.7584670231729055, 'number': 1065} 0.6778 0.7556 0.7146 0.7867
0.5193 7.0 70 0.6605 {'precision': 0.6949516648764769, 'recall': 0.799752781211372, 'f1': 0.7436781609195402, 'number': 809} {'precision': 0.20618556701030927, 'recall': 0.16806722689075632, 'f1': 0.1851851851851852, 'number': 119} {'precision': 0.734468085106383, 'recall': 0.8103286384976526, 'f1': 0.7705357142857142, 'number': 1065} 0.6945 0.7677 0.7293 0.7979
0.4591 8.0 80 0.6473 {'precision': 0.6922246220302376, 'recall': 0.792336217552534, 'f1': 0.7389048991354467, 'number': 809} {'precision': 0.24, 'recall': 0.20168067226890757, 'f1': 0.2191780821917808, 'number': 119} {'precision': 0.7382154882154882, 'recall': 0.8234741784037559, 'f1': 0.7785175321793164, 'number': 1065} 0.6965 0.7737 0.7331 0.8059
0.3939 9.0 90 0.6369 {'precision': 0.6886291179596175, 'recall': 0.8009888751545118, 'f1': 0.7405714285714285, 'number': 809} {'precision': 0.2777777777777778, 'recall': 0.25210084033613445, 'f1': 0.2643171806167401, 'number': 119} {'precision': 0.7515047291487532, 'recall': 0.8206572769953052, 'f1': 0.784560143626571, 'number': 1065} 0.7016 0.7787 0.7382 0.8088
0.3604 10.0 100 0.6514 {'precision': 0.6954643628509719, 'recall': 0.796044499381953, 'f1': 0.7423631123919308, 'number': 809} {'precision': 0.29, 'recall': 0.24369747899159663, 'f1': 0.2648401826484018, 'number': 119} {'precision': 0.7665505226480837, 'recall': 0.8262910798122066, 'f1': 0.7953004970628107, 'number': 1065} 0.7144 0.7792 0.7454 0.8125
0.3344 11.0 110 0.6505 {'precision': 0.7031419284940412, 'recall': 0.8022249690976514, 'f1': 0.7494226327944574, 'number': 809} {'precision': 0.3153153153153153, 'recall': 0.29411764705882354, 'f1': 0.30434782608695654, 'number': 119} {'precision': 0.755632582322357, 'recall': 0.8187793427230047, 'f1': 0.7859396124380351, 'number': 1065} 0.7112 0.7807 0.7443 0.8087
0.3144 12.0 120 0.6461 {'precision': 0.6973262032085561, 'recall': 0.8059332509270705, 'f1': 0.7477064220183487, 'number': 809} {'precision': 0.3119266055045872, 'recall': 0.2857142857142857, 'f1': 0.2982456140350877, 'number': 119} {'precision': 0.7590051457975986, 'recall': 0.8309859154929577, 'f1': 0.7933662034961901, 'number': 1065} 0.7109 0.7883 0.7476 0.8137
0.2976 13.0 130 0.6569 {'precision': 0.6925531914893617, 'recall': 0.8046971569839307, 'f1': 0.7444253859348199, 'number': 809} {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119} {'precision': 0.7586805555555556, 'recall': 0.8206572769953052, 'f1': 0.7884528642309426, 'number': 1065} 0.7060 0.7832 0.7426 0.8094
0.2876 14.0 140 0.6629 {'precision': 0.7034632034632035, 'recall': 0.8034610630407911, 'f1': 0.7501442585112521, 'number': 809} {'precision': 0.3148148148148148, 'recall': 0.2857142857142857, 'f1': 0.29955947136563876, 'number': 119} {'precision': 0.7657894736842106, 'recall': 0.819718309859155, 'f1': 0.7918367346938776, 'number': 1065} 0.7169 0.7812 0.7477 0.8104
0.2877 15.0 150 0.6624 {'precision': 0.7003222341568206, 'recall': 0.8059332509270705, 'f1': 0.7494252873563217, 'number': 809} {'precision': 0.3148148148148148, 'recall': 0.2857142857142857, 'f1': 0.29955947136563876, 'number': 119} {'precision': 0.7602441150828247, 'recall': 0.8187793427230047, 'f1': 0.7884267631103073, 'number': 1065} 0.7127 0.7817 0.7456 0.8098

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0