Aria / README.md
XFFXFF's picture
update readme
ad9ba0d
|
raw
history blame
6.4 kB
metadata
language:
  - en
library_name: transformers
license: apache-2.0
pipeline_tag: image-text-to-text
tags:
  - multimodal
  - aria
base_model:
  - rhymes-ai/Aria-Base-64K

Aria Model Card

[Dec 1, 2024] We have released the base models (with native multimodal pre-training) for Aria (Aria-Base-8K and Aria-Base-64K) for research purposes and continue training.

Key features

  • SoTA Multimodal Native Performance: Aria achieves strong performance on a wide range of multimodal, language, and coding tasks. It is superior in video and document understanding.
  • Lightweight and Fast: Aria is a mixture-of-expert model with 3.9B activated parameters per token. It efficently encodes visual input of variable sizes and aspect ratios.
  • Long Multimodal Context Window: Aria supports multimodal input of up to 64K tokens. It can caption a 256-frame video in 10 seconds.

🔗 Try Aria! · 📖 Blog · 📌 Paper · ⭐ GitHub · 🟣 Discord

Benchmark

Category Benchmark Aria Pixtral 12B Llama3.2 11B GPT-4o mini Gemini-1.5 Flash
Knowledge (Multimodal) MMMU 54.9 52.5 50.7 59.4 56.1
Math (Multimodal) MathVista 66.1 58.0 51.5 - 58.4
Document DocQA 92.6 90.7 84.4 - 89.9
Chart ChartQA 86.4 81.8 83.4 - 85.4
Scene Text TextVQA 81.1 - - - 78.7
General Visual QA MMBench-1.1 80.3 - - 76.0 -
Video Understanding LongVideoBench 65.3 47.4 45.7 58.8 62.4
Knowledge (Language) MMLU (5-shot) 73.3 69.2 69.4 - 78.9
Math (Language) MATH 50.8 48.1 51.9 70.2 -
Reasoning (Language) ARC Challenge 91.0 - 83.4 96.4 -
Coding HumanEval 73.2 72.0 72.6 87.2 74.3

Quick Start

Installation

# Install transformers from GitHub until the next release includes the Aria model
pip install git+https://github.com/huggingface/transformers.git

pip install accelerate sentencepiece torchvision requests torch Pillow
pip install flash-attn --no-build-isolation

# For better inference performance, you can install grouped-gemm, which may take 3-5 minutes to install
pip install grouped_gemm==0.1.6

Inference

Aria has 25.3B total parameters, it can be loaded in one A100 (80GB) GPU with bfloat16 precision.

Here is a code snippet to show you how to use Aria.

import requests
import torch
from PIL import Image

from transformers import AriaProcessor, AriaForConditionalGeneration


model_id_or_path = "rhymes-ai/Aria"
model = AriaForConditionalGeneration.from_pretrained(
    model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16
)

processor = AriaProcessor.from_pretrained(model_id_or_path)

image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)

messages = [
    {
        "role": "user",
        "content": [
            {"type": "image"},
            {"text": "what is the image?", "type": "text"},
        ],
    }
]

text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
inputs.to(model.device)

output = model.generate(
    **inputs,
    max_new_tokens=15,
    stop_strings=["<|im_end|>"],
    tokenizer=processor.tokenizer,
    do_sample=True,
    temperature=0.9,
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
response = processor.decode(output_ids, skip_special_tokens=True)
print(response)

Advanced Inference and Fine-tuning

We provide a codebase for more advanced usage of Aria, including vllm inference, cookbooks, and fine-tuning on custom datasets.

Citation

If you find our work helpful, please consider citing.

@article{aria,
  title={Aria: An Open Multimodal Native Mixture-of-Experts Model}, 
  author={Dongxu Li and Yudong Liu and Haoning Wu and Yue Wang and Zhiqi Shen and Bowen Qu and Xinyao Niu and Guoyin Wang and Bei Chen and Junnan Li},
  year={2024},
  journal={arXiv preprint arXiv:2410.05993},
}