Update README.md
Browse files
README.md
CHANGED
@@ -150,200 +150,97 @@ model-index:
|
|
150 |
name: Open Portuguese LLM Leaderboard
|
151 |
---
|
152 |
|
153 |
-
#
|
154 |
|
155 |
-
|
|
|
|
|
156 |
|
157 |
|
|
|
|
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
|
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
|
|
|
|
166 |
|
167 |
-
-
|
168 |
-
|
169 |
-
|
170 |
-
- **Model type:** [More Information Needed]
|
171 |
-
- **Language(s) (NLP):** [More Information Needed]
|
172 |
-
- **License:** [More Information Needed]
|
173 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
174 |
|
175 |
-
|
|
|
|
|
|
|
176 |
|
177 |
-
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
- **Paper [optional]:** [More Information Needed]
|
181 |
-
- **Demo [optional]:** [More Information Needed]
|
182 |
|
183 |
-
|
|
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
### Direct Use
|
188 |
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
|
|
|
|
|
192 |
|
193 |
-
|
|
|
|
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
[More Information Needed]
|
204 |
-
|
205 |
-
## Bias, Risks, and Limitations
|
206 |
-
|
207 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
208 |
-
|
209 |
-
[More Information Needed]
|
210 |
-
|
211 |
-
### Recommendations
|
212 |
-
|
213 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
214 |
-
|
215 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
216 |
-
|
217 |
-
## How to Get Started with the Model
|
218 |
-
|
219 |
-
Use the code below to get started with the model.
|
220 |
-
|
221 |
-
[More Information Needed]
|
222 |
-
|
223 |
-
## Training Details
|
224 |
-
|
225 |
-
### Training Data
|
226 |
-
|
227 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
228 |
-
|
229 |
-
[More Information Needed]
|
230 |
-
|
231 |
-
### Training Procedure
|
232 |
-
|
233 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
234 |
-
|
235 |
-
#### Preprocessing [optional]
|
236 |
-
|
237 |
-
[More Information Needed]
|
238 |
-
|
239 |
-
|
240 |
-
#### Training Hyperparameters
|
241 |
-
|
242 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
243 |
-
|
244 |
-
#### Speeds, Sizes, Times [optional]
|
245 |
-
|
246 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
247 |
-
|
248 |
-
[More Information Needed]
|
249 |
-
|
250 |
-
## Evaluation
|
251 |
-
|
252 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
253 |
-
|
254 |
-
### Testing Data, Factors & Metrics
|
255 |
-
|
256 |
-
#### Testing Data
|
257 |
-
|
258 |
-
<!-- This should link to a Dataset Card if possible. -->
|
259 |
-
|
260 |
-
[More Information Needed]
|
261 |
-
|
262 |
-
#### Factors
|
263 |
-
|
264 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
265 |
-
|
266 |
-
[More Information Needed]
|
267 |
-
|
268 |
-
#### Metrics
|
269 |
-
|
270 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
271 |
-
|
272 |
-
[More Information Needed]
|
273 |
-
|
274 |
-
### Results
|
275 |
-
|
276 |
-
[More Information Needed]
|
277 |
-
|
278 |
-
#### Summary
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
## Model Examination [optional]
|
283 |
-
|
284 |
-
<!-- Relevant interpretability work for the model goes here -->
|
285 |
-
|
286 |
-
[More Information Needed]
|
287 |
-
|
288 |
-
## Environmental Impact
|
289 |
-
|
290 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
291 |
-
|
292 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
293 |
-
|
294 |
-
- **Hardware Type:** [More Information Needed]
|
295 |
-
- **Hours used:** [More Information Needed]
|
296 |
-
- **Cloud Provider:** [More Information Needed]
|
297 |
-
- **Compute Region:** [More Information Needed]
|
298 |
-
- **Carbon Emitted:** [More Information Needed]
|
299 |
-
|
300 |
-
## Technical Specifications [optional]
|
301 |
-
|
302 |
-
### Model Architecture and Objective
|
303 |
-
|
304 |
-
[More Information Needed]
|
305 |
-
|
306 |
-
### Compute Infrastructure
|
307 |
-
|
308 |
-
[More Information Needed]
|
309 |
-
|
310 |
-
#### Hardware
|
311 |
-
|
312 |
-
[More Information Needed]
|
313 |
-
|
314 |
-
#### Software
|
315 |
-
|
316 |
-
[More Information Needed]
|
317 |
-
|
318 |
-
## Citation [optional]
|
319 |
-
|
320 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
321 |
-
|
322 |
-
**BibTeX:**
|
323 |
-
|
324 |
-
[More Information Needed]
|
325 |
-
|
326 |
-
**APA:**
|
327 |
-
|
328 |
-
[More Information Needed]
|
329 |
-
|
330 |
-
## Glossary [optional]
|
331 |
-
|
332 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
333 |
-
|
334 |
-
[More Information Needed]
|
335 |
-
|
336 |
-
## More Information [optional]
|
337 |
-
|
338 |
-
[More Information Needed]
|
339 |
-
|
340 |
-
## Model Card Authors [optional]
|
341 |
-
|
342 |
-
[More Information Needed]
|
343 |
-
|
344 |
-
## Model Card Contact
|
345 |
-
|
346 |
-
[More Information Needed]
|
347 |
|
348 |
|
349 |
# Open Portuguese LLM Leaderboard Evaluation Results
|
@@ -363,3 +260,17 @@ Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-
|
|
363 |
|PT Hate Speech Binary | 65.76|
|
364 |
|tweetSentBR | 53.32|
|
365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
name: Open Portuguese LLM Leaderboard
|
151 |
---
|
152 |
|
153 |
+
# Phi-3-portuguese-tom-cat-128k-instruct
|
154 |
|
155 |
+
<p align="center">
|
156 |
+
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/tom-cat.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
157 |
+
</p>
|
158 |
|
159 |
|
160 |
+
This model was trained with a superset of 300,000 instructions in Portuguese.
|
161 |
+
The model comes to help fill the gap in models in Portuguese. Tuned from the microsoft/Phi-3-mini-4k.
|
162 |
|
163 |
+
# How to use
|
164 |
|
165 |
+
This model was trained with a superset of 300,000 instructions in Portuguese.
|
166 |
+
The model comes to help fill the gap in models in Portuguese. Tuned from the microsoft/Phi-3-mini-4k.
|
167 |
|
168 |
+
# How to use
|
169 |
|
170 |
+
### FULL MODEL : A100
|
171 |
+
### HALF MODEL: L4
|
172 |
+
### 8bit or 4bit : T4 or V100
|
173 |
|
174 |
+
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches.
|
175 |
+
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response.
|
176 |
+
Important points like these help models (even smaller models like 4b) to perform much better.
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
```python
|
179 |
+
!pip install -q -U transformers
|
180 |
+
!pip install -q -U accelerate
|
181 |
+
!pip install -q -U bitsandbytes
|
182 |
|
183 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
184 |
+
model = AutoModelForCausalLM.from_pretrained("rhaymison/phi-3-portuguese-tom-cat-4k-instruct", device_map= {"": 0})
|
185 |
+
tokenizer = AutoTokenizer.from_pretrained("rhaymison/phi-3-portuguese-tom-cat-4k-instruct")
|
186 |
+
model.eval()
|
187 |
|
188 |
+
```
|
|
|
|
|
189 |
|
190 |
+
You can use with Pipeline.
|
191 |
+
```python
|
192 |
|
193 |
+
from transformers import pipeline
|
194 |
+
pipe = pipeline("text-generation",
|
195 |
+
model=model,
|
196 |
+
tokenizer=tokenizer,
|
197 |
+
do_sample=True,
|
198 |
+
max_new_tokens=512,
|
199 |
+
num_beams=2,
|
200 |
+
temperature=0.3,
|
201 |
+
top_k=50,
|
202 |
+
top_p=0.95,
|
203 |
+
early_stopping=True,
|
204 |
+
pad_token_id=tokenizer.eos_token_id,
|
205 |
+
)
|
206 |
|
|
|
207 |
|
208 |
+
def format_template(question:str):
|
209 |
+
system_prompt = "Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido."
|
210 |
+
return f"""<s><|system|>
|
211 |
+
{ system_prompt }
|
212 |
+
<|user|>
|
213 |
+
{ question }
|
214 |
+
<|assistant|>
|
215 |
+
"""
|
216 |
|
217 |
+
question = format_template("E possivel ir de Carro dos Estados unidos ate o japão")
|
218 |
+
pipe(question)
|
219 |
+
```
|
220 |
|
221 |
+
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization.
|
222 |
+
For the complete model in colab you will need the A100.
|
223 |
+
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.
|
224 |
|
225 |
+
# 4bits example
|
226 |
|
227 |
+
```python
|
228 |
+
from transformers import BitsAndBytesConfig
|
229 |
+
import torch
|
230 |
+
nb_4bit_config = BitsAndBytesConfig(
|
231 |
+
load_in_4bit=True,
|
232 |
+
bnb_4bit_quant_type="nf4",
|
233 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
234 |
+
bnb_4bit_use_double_quant=True
|
235 |
+
)
|
236 |
|
237 |
+
model = AutoModelForCausalLM.from_pretrained(
|
238 |
+
base_model,
|
239 |
+
quantization_config=bnb_config,
|
240 |
+
device_map={"": 0}
|
241 |
+
)
|
242 |
|
243 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
|
246 |
# Open Portuguese LLM Leaderboard Evaluation Results
|
|
|
260 |
|PT Hate Speech Binary | 65.76|
|
261 |
|tweetSentBR | 53.32|
|
262 |
|
263 |
+
|
264 |
+
### Comments
|
265 |
+
|
266 |
+
Any idea, help or report will always be welcome.
|
267 |
+
|
268 |
+
email: rhaymisoncristian@gmail.com
|
269 |
+
|
270 |
+
<div style="display:flex; flex-direction:row; justify-content:left">
|
271 |
+
<a href="https://www.linkedin.com/in/rhaymison-cristian-betini-2b3016175/" target="_blank">
|
272 |
+
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white">
|
273 |
+
</a>
|
274 |
+
<a href="https://github.com/rhaymisonbetini" target="_blank">
|
275 |
+
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white">
|
276 |
+
</a>
|