reyhanemyr's picture
update model card README.md
b811abb
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-base-finetuned-papernew5
    results: []

roberta-base-finetuned-papernew5

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0864
  • Precision: 0.7835
  • Recall: 0.8144
  • F1: 0.7986
  • Accuracy: 0.9742

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 81 0.1872 0.6657 0.5174 0.5822 0.9511
No log 2.0 162 0.1321 0.6189 0.7912 0.6945 0.9585
No log 3.0 243 0.0864 0.7835 0.8144 0.7986 0.9742
No log 4.0 324 0.0891 0.7532 0.8144 0.7826 0.9723
No log 5.0 405 0.1004 0.7542 0.8399 0.7947 0.9723
No log 6.0 486 0.1197 0.7267 0.8515 0.7842 0.9677
0.1476 7.0 567 0.1237 0.7605 0.8399 0.7982 0.9709
0.1476 8.0 648 0.1104 0.7383 0.8445 0.7879 0.9728
0.1476 9.0 729 0.1179 0.7863 0.8283 0.8068 0.9742
0.1476 10.0 810 0.1150 0.7811 0.8608 0.8190 0.9752
0.1476 11.0 891 0.1273 0.7602 0.8608 0.8074 0.9728
0.1476 12.0 972 0.1230 0.7711 0.8677 0.8166 0.9751
0.014 13.0 1053 0.1280 0.7815 0.8631 0.8203 0.9753
0.014 14.0 1134 0.1285 0.7755 0.8654 0.8180 0.9753
0.014 15.0 1215 0.1336 0.7639 0.8631 0.8105 0.9740

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2