gossminn's picture
update model card README.md
95650d4
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: predict-perception-bert-focus-concept
    results: []

predict-perception-bert-focus-concept

This model is a fine-tuned version of dbmdz/bert-base-italian-xxl-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8129
  • Rmse: 1.0197
  • Rmse Focus::a Su un concetto astratto o un'emozione: 1.0197
  • Mae: 0.7494
  • Mae Focus::a Su un concetto astratto o un'emozione: 0.7494
  • R2: 0.1970
  • R2 Focus::a Su un concetto astratto o un'emozione: 0.1970
  • Cos: 0.4783
  • Pair: 0.0
  • Rank: 0.5
  • Neighbors: 0.4667
  • Rsa: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 20
  • eval_batch_size: 8
  • seed: 1996
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rmse Rmse Focus::a Su un concetto astratto o un'emozione Mae Mae Focus::a Su un concetto astratto o un'emozione R2 R2 Focus::a Su un concetto astratto o un'emozione Cos Pair Rank Neighbors Rsa
1.047 1.0 15 1.0199 1.1422 1.1422 0.9321 0.9321 -0.0075 -0.0075 0.1304 0.0 0.5 0.3199 nan
0.9914 2.0 30 0.9724 1.1153 1.1153 0.9407 0.9407 0.0393 0.0393 0.2174 0.0 0.5 0.3954 nan
0.9049 3.0 45 0.9406 1.0969 1.0969 0.9170 0.9170 0.0708 0.0708 0.2174 0.0 0.5 0.3632 nan
0.8826 4.0 60 0.8553 1.0460 1.0460 0.8570 0.8570 0.1551 0.1551 0.2174 0.0 0.5 0.3230 nan
0.7837 5.0 75 0.8324 1.0319 1.0319 0.8683 0.8683 0.1776 0.1776 0.2174 0.0 0.5 0.3419 nan
0.7013 6.0 90 0.7737 0.9949 0.9949 0.8150 0.8150 0.2356 0.2356 0.5652 0.0 0.5 0.5023 nan
0.6429 7.0 105 0.7832 1.0010 1.0010 0.8005 0.8005 0.2262 0.2262 0.3913 0.0 0.5 0.4446 nan
0.5526 8.0 120 0.7734 0.9946 0.9946 0.7704 0.7704 0.2360 0.2360 0.3043 0.0 0.5 0.2923 nan
0.5194 9.0 135 0.6624 0.9205 0.9205 0.7013 0.7013 0.3456 0.3456 0.3913 0.0 0.5 0.3523 nan
0.4278 10.0 150 0.8255 1.0276 1.0276 0.7351 0.7351 0.1845 0.1845 0.3043 0.0 0.5 0.4349 nan
0.3522 11.0 165 0.9340 1.0931 1.0931 0.8069 0.8069 0.0773 0.0773 0.3913 0.0 0.5 0.4059 nan
0.314 12.0 180 0.7495 0.9792 0.9792 0.7254 0.7254 0.2596 0.2596 0.3913 0.0 0.5 0.4059 nan
0.2665 13.0 195 0.8574 1.0473 1.0473 0.7678 0.7678 0.1530 0.1530 0.3913 0.0 0.5 0.4059 nan
0.2348 14.0 210 0.7913 1.0061 1.0061 0.7218 0.7218 0.2183 0.2183 0.3913 0.0 0.5 0.4059 nan
0.1859 15.0 225 0.8012 1.0124 1.0124 0.7162 0.7162 0.2085 0.2085 0.3913 0.0 0.5 0.4059 nan
0.1373 16.0 240 0.8405 1.0369 1.0369 0.7318 0.7318 0.1697 0.1697 0.3043 0.0 0.5 0.3734 nan
0.1245 17.0 255 0.8398 1.0365 1.0365 0.7455 0.7455 0.1703 0.1703 0.4783 0.0 0.5 0.4667 nan
0.1148 18.0 270 0.7948 1.0083 1.0083 0.7140 0.7140 0.2148 0.2148 0.3913 0.0 0.5 0.4175 nan
0.1187 19.0 285 0.8301 1.0305 1.0305 0.7381 0.7381 0.1799 0.1799 0.3913 0.0 0.5 0.4175 nan
0.1236 20.0 300 0.8867 1.0650 1.0650 0.7879 0.7879 0.1240 0.1240 0.3913 0.0 0.5 0.4059 nan
0.1101 21.0 315 0.8405 1.0369 1.0369 0.7632 0.7632 0.1696 0.1696 0.3913 0.0 0.5 0.4059 nan
0.0902 22.0 330 0.7850 1.0021 1.0021 0.7173 0.7173 0.2245 0.2245 0.3043 0.0 0.5 0.3734 nan
0.093 23.0 345 0.7386 0.9720 0.9720 0.6960 0.6960 0.2704 0.2704 0.3913 0.0 0.5 0.4175 nan
0.0846 24.0 360 0.7748 0.9956 0.9956 0.7150 0.7150 0.2345 0.2345 0.3913 0.0 0.5 0.4175 nan
0.0826 25.0 375 0.7951 1.0085 1.0085 0.7230 0.7230 0.2145 0.2145 0.3913 0.0 0.5 0.4175 nan
0.0749 26.0 390 0.8470 1.0409 1.0409 0.7621 0.7621 0.1633 0.1633 0.4783 0.0 0.5 0.4667 nan
0.069 27.0 405 0.7968 1.0096 1.0096 0.7275 0.7275 0.2129 0.2129 0.3913 0.0 0.5 0.4175 nan
0.0775 28.0 420 0.8298 1.0303 1.0303 0.7589 0.7589 0.1802 0.1802 0.4783 0.0 0.5 0.4667 nan
0.0783 29.0 435 0.8113 1.0188 1.0188 0.7469 0.7469 0.1985 0.1985 0.4783 0.0 0.5 0.4667 nan
0.0773 30.0 450 0.8129 1.0197 1.0197 0.7494 0.7494 0.1970 0.1970 0.4783 0.0 0.5 0.4667 nan

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.2+cu113
  • Datasets 1.18.3
  • Tokenizers 0.11.0