metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
generate question: <hl> Beyonce <hl> further expanded her acting career,
starring as blues singer Etta James in the 2008 musical biopic, Cadillac
Records.
example_title: Question Generation Example 1
- text: >-
generate question: Beyonce further expanded her acting career, starring as
blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac
Records.
example_title: Question Generation Example 2
- text: >-
generate question: Beyonce further expanded her acting career, starring as
blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records
<hl> .
example_title: Question Generation Example 3
model-index:
- name: lmqg/t5-base-subjqa-books
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: books
args: books
metrics:
- name: BLEU4
type: bleu4
value: 0.000002600973149435955
- name: ROUGE-L
type: rouge-l
value: 0.22951859052862766
- name: METEOR
type: meteor
value: 0.21203557376943663
- name: BERTScore
type: bertscore
value: 0.9331581589439153
- name: MoverScore
type: moverscore
value: 0.6314041710040545
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_squad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.2087191069506097
- name: ROUGE-L
type: rouge-l
value: 0.4824194822687923
- name: METEOR
type: meteor
value: 0.22369289060703182
- name: BERTScore
type: bertscore
value: 0.9063421096238328
- name: MoverScore
type: moverscore
value: 0.6228301030244887
Language Models Fine-tuning on Question Generation: lmqg/t5-base-subjqa-books
This model is fine-tuned version of lmqg/t5-base-squad for question generation task on the lmqg/qg_subjqa (dataset_name: books). This model is continuously fine-tuned with lmqg/t5-base-squad.
Overview
- Language model: lmqg/t5-base-squad
- Language: en
- Training data: lmqg/qg_subjqa (books)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: TBA
Usage
from transformers import pipeline
model_path = 'lmqg/t5-base-subjqa-books'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
input_text = 'generate question: <hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.'
question = pipe(input_text)
Evaluation Metrics
Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_subjqa | books | 2.600973149435955e-06 | 0.22951859052862766 | 0.21203557376943663 | 0.9331581589439153 | 0.6314041710040545 | link |
Out-of-domain Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_squad | default | 0.2087191069506097 | 0.4824194822687923 | 0.22369289060703182 | 0.9063421096238328 | 0.6228301030244887 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_subjqa
- dataset_name: books
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: ['qg']
- model: lmqg/t5-base-squad
- max_length: 512
- max_length_output: 32
- epoch: 3
- batch: 16
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
TBA