|
|
|
--- |
|
license: cc-by-4.0 |
|
metrics: |
|
- bleu4 |
|
- meteor |
|
- rouge-l |
|
- bertscore |
|
- moverscore |
|
language: ru |
|
datasets: |
|
- lmqg/qg_ruquad |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- question generation |
|
widget: |
|
- text: "Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов." |
|
example_title: "Question Generation Example 1" |
|
- text: "Однако, франкоязычный <hl> Квебек <hl> практически никогда не включается в состав Латинской Америки." |
|
example_title: "Question Generation Example 2" |
|
- text: "Классическим примером международного синдиката XX века была группа компаний <hl> Де Бирс <hl> , которая в 1980-е годы контролировала до 90 % мировой торговли алмазами." |
|
example_title: "Question Generation Example 3" |
|
model-index: |
|
- name: lmqg/mbart-large-cc25-ruquad-qg |
|
results: |
|
- task: |
|
name: Text2text Generation |
|
type: text2text-generation |
|
dataset: |
|
name: lmqg/qg_ruquad |
|
type: default |
|
args: default |
|
metrics: |
|
- name: BLEU4 (Question Generation) |
|
type: bleu4_question_generation |
|
value: 18.8 |
|
- name: ROUGE-L (Question Generation) |
|
type: rouge_l_question_generation |
|
value: 34.18 |
|
- name: METEOR (Question Generation) |
|
type: meteor_question_generation |
|
value: 29.3 |
|
- name: BERTScore (Question Generation) |
|
type: bertscore_question_generation |
|
value: 87.18 |
|
- name: MoverScore (Question Generation) |
|
type: moverscore_question_generation |
|
value: 65.88 |
|
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] |
|
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer |
|
value: 92.08 |
|
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] |
|
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer |
|
value: 92.08 |
|
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] |
|
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer |
|
value: 92.09 |
|
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] |
|
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer |
|
value: 71.45 |
|
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] |
|
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer |
|
value: 71.45 |
|
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer] |
|
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer |
|
value: 71.46 |
|
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer] |
|
type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer |
|
value: 79.14 |
|
- name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer] |
|
type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer |
|
value: 82.85 |
|
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer] |
|
type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer |
|
value: 75.88 |
|
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer] |
|
type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer |
|
value: 56.25 |
|
- name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer] |
|
type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer |
|
value: 58.93 |
|
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer] |
|
type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer |
|
value: 54.01 |
|
--- |
|
|
|
# Model Card of `lmqg/mbart-large-cc25-ruquad-qg` |
|
This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation task on the [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). |
|
|
|
|
|
### Overview |
|
- **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) |
|
- **Language:** ru |
|
- **Training data:** [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (default) |
|
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/) |
|
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) |
|
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) |
|
|
|
### Usage |
|
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) |
|
```python |
|
from lmqg import TransformersQG |
|
|
|
# initialize model |
|
model = TransformersQG(language="ru", model="lmqg/mbart-large-cc25-ruquad-qg") |
|
|
|
# model prediction |
|
questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года") |
|
|
|
``` |
|
|
|
- With `transformers` |
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-ruquad-qg") |
|
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.") |
|
|
|
``` |
|
|
|
## Evaluation |
|
|
|
|
|
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:-----------|--------:|:--------|:-----------------------------------------------------------------| |
|
| BERTScore | 87.18 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| Bleu_1 | 35.25 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| Bleu_2 | 28.1 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| Bleu_3 | 22.87 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| Bleu_4 | 18.8 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| METEOR | 29.3 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| MoverScore | 65.88 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| ROUGE_L | 34.18 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
|
|
|
|
- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| |
|
| QAAlignedF1Score (BERTScore) | 92.08 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedF1Score (MoverScore) | 71.45 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedPrecision (BERTScore) | 92.09 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedPrecision (MoverScore) | 71.46 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedRecall (BERTScore) | 92.08 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedRecall (MoverScore) | 71.45 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
|
|
|
|
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mbart-large-cc25-ruquad-ae`](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-ae). [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.lmqg_mbart-large-cc25-ruquad-ae.json) |
|
|
|
| | Score | Type | Dataset | |
|
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------| |
|
| QAAlignedF1Score (BERTScore) | 79.14 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedF1Score (MoverScore) | 56.25 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedPrecision (BERTScore) | 75.88 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedPrecision (MoverScore) | 54.01 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedRecall (BERTScore) | 82.85 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
| QAAlignedRecall (MoverScore) | 58.93 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | |
|
|
|
|
|
|
|
## Training hyperparameters |
|
|
|
The following hyperparameters were used during fine-tuning: |
|
- dataset_path: lmqg/qg_ruquad |
|
- dataset_name: default |
|
- input_types: ['paragraph_answer'] |
|
- output_types: ['question'] |
|
- prefix_types: None |
|
- model: facebook/mbart-large-cc25 |
|
- max_length: 512 |
|
- max_length_output: 32 |
|
- epoch: 17 |
|
- batch: 4 |
|
- lr: 0.0001 |
|
- fp16: False |
|
- random_seed: 1 |
|
- gradient_accumulation_steps: 16 |
|
- label_smoothing: 0.15 |
|
|
|
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qg/raw/main/trainer_config.json). |
|
|
|
## Citation |
|
``` |
|
@inproceedings{ushio-etal-2022-generative, |
|
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", |
|
author = "Ushio, Asahi and |
|
Alva-Manchego, Fernando and |
|
Camacho-Collados, Jose", |
|
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, U.A.E.", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
|
|
``` |
|
|