model update
Browse files- README.md +215 -0
- config.json +1 -1
- eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json +1 -0
- eval/metric.first.answer.paragraph_answer.question.lmqg_qg_itquad.default.json +1 -0
- eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json +1 -0
- eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json +1 -0
- eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt +0 -0
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
- trainer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: cc-by-4.0
|
4 |
+
metrics:
|
5 |
+
- bleu4
|
6 |
+
- meteor
|
7 |
+
- rouge-l
|
8 |
+
- bertscore
|
9 |
+
- moverscore
|
10 |
+
language: it
|
11 |
+
datasets:
|
12 |
+
- lmqg/qg_itquad
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
+
tags:
|
15 |
+
- question generation
|
16 |
+
- answer extraction
|
17 |
+
widget:
|
18 |
+
- text: "generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
|
19 |
+
example_title: "Question Generation Example 1"
|
20 |
+
- text: "generate question: L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa."
|
21 |
+
example_title: "Question Generation Example 2"
|
22 |
+
- text: "generate question: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo."
|
23 |
+
example_title: "Question Generation Example 3"
|
24 |
+
- text: "extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento."
|
25 |
+
example_title: "Answer Extraction Example 1"
|
26 |
+
- text: "extract answers: <hl> Furono introdotti autocarri compatti, come la Toyota Hilux e il Datsun Truck, seguiti dal camion Mazda (venduto come il Ford Courier), e l' Isuzu costruito Chevrolet LUV. <hl> Mitsubishi rebranded il suo Forte come Dodge D-50 pochi anni dopo la crisi petrolifera. Mazda, Mitsubishi e Isuzu avevano partnership congiunte rispettivamente con Ford, Chrysler e GM. In seguito i produttori americani introdussero le loro sostituzioni nazionali (Ford Ranger, Dodge Dakota e la Chevrolet S10/GMC S-15), ponendo fine alla loro politica di importazione vincolata."
|
27 |
+
example_title: "Answer Extraction Example 2"
|
28 |
+
model-index:
|
29 |
+
- name: lmqg/mbart-large-cc25-itquad-qg-ae
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
name: Text2text Generation
|
33 |
+
type: text2text-generation
|
34 |
+
dataset:
|
35 |
+
name: lmqg/qg_itquad
|
36 |
+
type: default
|
37 |
+
args: default
|
38 |
+
metrics:
|
39 |
+
- name: BLEU4 (Question Generation)
|
40 |
+
type: bleu4_question_generation
|
41 |
+
value: 7.06
|
42 |
+
- name: ROUGE-L (Question Generation)
|
43 |
+
type: rouge_l_question_generation
|
44 |
+
value: 20.15
|
45 |
+
- name: METEOR (Question Generation)
|
46 |
+
type: meteor_question_generation
|
47 |
+
value: 16.86
|
48 |
+
- name: BERTScore (Question Generation)
|
49 |
+
type: bertscore_question_generation
|
50 |
+
value: 79.29
|
51 |
+
- name: MoverScore (Question Generation)
|
52 |
+
type: moverscore_question_generation
|
53 |
+
value: 55.92
|
54 |
+
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer))
|
55 |
+
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer
|
56 |
+
value: 82.65
|
57 |
+
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer))
|
58 |
+
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer
|
59 |
+
value: 84.34
|
60 |
+
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer))
|
61 |
+
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer
|
62 |
+
value: 81.06
|
63 |
+
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer))
|
64 |
+
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer
|
65 |
+
value: 56.14
|
66 |
+
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer))
|
67 |
+
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer
|
68 |
+
value: 57.13
|
69 |
+
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer))
|
70 |
+
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer
|
71 |
+
value: 55.22
|
72 |
+
- name: BLEU4 (Answer Extraction)
|
73 |
+
type: bleu4_answer_extraction
|
74 |
+
value: 20.21
|
75 |
+
- name: ROUGE-L (Answer Extraction)
|
76 |
+
type: rouge_l_answer_extraction
|
77 |
+
value: 46.51
|
78 |
+
- name: METEOR (Answer Extraction)
|
79 |
+
type: meteor_answer_extraction
|
80 |
+
value: 44.48
|
81 |
+
- name: BERTScore (Answer Extraction)
|
82 |
+
type: bertscore_answer_extraction
|
83 |
+
value: 90.63
|
84 |
+
- name: MoverScore (Answer Extraction)
|
85 |
+
type: moverscore_answer_extraction
|
86 |
+
value: 83.05
|
87 |
+
- name: AnswerF1Score (Answer Extraction)
|
88 |
+
type: answer_f1_score__answer_extraction
|
89 |
+
value: 76.59
|
90 |
+
- name: AnswerExactMatch (Answer Extraction)
|
91 |
+
type: answer_exact_match_answer_extraction
|
92 |
+
value: 63.88
|
93 |
+
---
|
94 |
+
|
95 |
+
# Model Card of `lmqg/mbart-large-cc25-itquad-qg-ae`
|
96 |
+
This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question generation and answer extraction jointly on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
97 |
+
|
98 |
+
|
99 |
+
### Overview
|
100 |
+
- **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25)
|
101 |
+
- **Language:** it
|
102 |
+
- **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
|
103 |
+
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
104 |
+
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
105 |
+
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
|
106 |
+
|
107 |
+
### Usage
|
108 |
+
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
|
109 |
+
```python
|
110 |
+
from lmqg import TransformersQG
|
111 |
+
|
112 |
+
# initialize model
|
113 |
+
model = TransformersQG(language="it", model="lmqg/mbart-large-cc25-itquad-qg-ae")
|
114 |
+
|
115 |
+
# model prediction
|
116 |
+
question_answer_pairs = model.generate_qa("Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
|
117 |
+
|
118 |
+
```
|
119 |
+
|
120 |
+
- With `transformers`
|
121 |
+
```python
|
122 |
+
from transformers import pipeline
|
123 |
+
|
124 |
+
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-itquad-qg-ae")
|
125 |
+
|
126 |
+
# answer extraction
|
127 |
+
answer = pipe("generate question: <hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.")
|
128 |
+
|
129 |
+
# question generation
|
130 |
+
question = pipe("extract answers: <hl> Il 6 ottobre 1973 , la Siria e l' Egitto, con il sostegno di altre nazioni arabe, lanciarono un attacco a sorpresa su Israele, su Yom Kippur. <hl> Questo rinnovo delle ostilità nel conflitto arabo-israeliano ha liberato la pressione economica sottostante sui prezzi del petrolio. All' epoca, l' Iran era il secondo esportatore mondiale di petrolio e un vicino alleato degli Stati Uniti. Settimane più tardi, lo scià d' Iran ha detto in un' intervista: Naturalmente[il prezzo del petrolio] sta andando a salire Certamente! E come! Avete[Paesi occidentali] aumentato il prezzo del grano che ci vendete del 300 per cento, e lo stesso per zucchero e cemento.")
|
131 |
+
|
132 |
+
```
|
133 |
+
|
134 |
+
## Evaluation
|
135 |
+
|
136 |
+
|
137 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json)
|
138 |
+
|
139 |
+
| | Score | Type | Dataset |
|
140 |
+
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
141 |
+
| BERTScore | 79.29 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
142 |
+
| Bleu_1 | 22.03 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
143 |
+
| Bleu_2 | 14.31 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
144 |
+
| Bleu_3 | 9.9 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
145 |
+
| Bleu_4 | 7.06 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
146 |
+
| METEOR | 16.86 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
147 |
+
| MoverScore | 55.92 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
148 |
+
| ROUGE_L | 20.15 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
149 |
+
|
150 |
+
|
151 |
+
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json)
|
152 |
+
|
153 |
+
| | Score | Type | Dataset |
|
154 |
+
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
155 |
+
| QAAlignedF1Score (BERTScore) | 82.65 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
156 |
+
| QAAlignedF1Score (MoverScore) | 56.14 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
157 |
+
| QAAlignedPrecision (BERTScore) | 81.06 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
158 |
+
| QAAlignedPrecision (MoverScore) | 55.22 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
159 |
+
| QAAlignedRecall (BERTScore) | 84.34 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
160 |
+
| QAAlignedRecall (MoverScore) | 57.13 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
161 |
+
|
162 |
+
|
163 |
+
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json)
|
164 |
+
|
165 |
+
| | Score | Type | Dataset |
|
166 |
+
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
|
167 |
+
| AnswerExactMatch | 63.88 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
168 |
+
| AnswerF1Score | 76.59 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
169 |
+
| BERTScore | 90.63 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
170 |
+
| Bleu_1 | 33.66 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
171 |
+
| Bleu_2 | 27.96 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
172 |
+
| Bleu_3 | 23.79 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
173 |
+
| Bleu_4 | 20.21 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
174 |
+
| METEOR | 44.48 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
175 |
+
| MoverScore | 83.05 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
176 |
+
| ROUGE_L | 46.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
## Training hyperparameters
|
181 |
+
|
182 |
+
The following hyperparameters were used during fine-tuning:
|
183 |
+
- dataset_path: lmqg/qg_itquad
|
184 |
+
- dataset_name: default
|
185 |
+
- input_types: ['paragraph_answer', 'paragraph_sentence']
|
186 |
+
- output_types: ['question', 'answer']
|
187 |
+
- prefix_types: ['qg', 'ae']
|
188 |
+
- model: facebook/mbart-large-cc25
|
189 |
+
- max_length: 512
|
190 |
+
- max_length_output: 32
|
191 |
+
- epoch: 8
|
192 |
+
- batch: 2
|
193 |
+
- lr: 0.0001
|
194 |
+
- fp16: False
|
195 |
+
- random_seed: 1
|
196 |
+
- gradient_accumulation_steps: 32
|
197 |
+
- label_smoothing: 0.15
|
198 |
+
|
199 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qg-ae/raw/main/trainer_config.json).
|
200 |
+
|
201 |
+
## Citation
|
202 |
+
```
|
203 |
+
@inproceedings{ushio-etal-2022-generative,
|
204 |
+
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
|
205 |
+
author = "Ushio, Asahi and
|
206 |
+
Alva-Manchego, Fernando and
|
207 |
+
Camacho-Collados, Jose",
|
208 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
209 |
+
month = dec,
|
210 |
+
year = "2022",
|
211 |
+
address = "Abu Dhabi, U.A.E.",
|
212 |
+
publisher = "Association for Computational Linguistics",
|
213 |
+
}
|
214 |
+
|
215 |
+
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "lmqg_output/mbart-large-cc25-itquad-qg-ae/
|
3 |
"_num_labels": 3,
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "lmqg_output/mbart-large-cc25-itquad-qg-ae/model_gljitg/epoch_5",
|
3 |
"_num_labels": 3,
|
4 |
"activation_dropout": 0.0,
|
5 |
"activation_function": "gelu",
|
eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_itquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"test": {"QAAlignedF1Score (BERTScore)": 0.8264963413651882, "QAAlignedRecall (BERTScore)": 0.8433949072468981, "QAAlignedPrecision (BERTScore)": 0.8106074732880147, "QAAlignedF1Score (MoverScore)": 0.5614028998279956, "QAAlignedRecall (MoverScore)": 0.5712826398930563, "QAAlignedPrecision (MoverScore)": 0.5522132111469052, "Bleu_1": 0.16312877420973168, "Bleu_2": 0.0925206396933409, "Bleu_3": 0.047284456202529156, "Bleu_4": 0.025330248008968437, "METEOR": 0.2506318329951036, "ROUGE_L": 0.19514561704456454, "BERTScore": 0.7366486872046046, "MoverScore": 0.5423528342324836}, "validation": {"QAAlignedF1Score (BERTScore)": 0.8100336065007487, "QAAlignedRecall (BERTScore)": 0.8446934290149599, "QAAlignedPrecision (BERTScore)": 0.7786250297045639, "QAAlignedF1Score (MoverScore)": 0.5504725180352802, "QAAlignedRecall (MoverScore)": 0.5723926119753241, "QAAlignedPrecision (MoverScore)": 0.5310473119264032, "Bleu_1": 0.050322111089023534, "Bleu_2": 0.0227113790498272, "Bleu_3": 0.010309740934486946, "Bleu_4": 0.005088103355677113, "METEOR": 0.15475325662503672, "ROUGE_L": 0.08998195745851649, "BERTScore": 0.636510829148209, "MoverScore": 0.5083552519592559}}
|
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_itquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.22081841317027878, "Bleu_2": 0.14625968090059838, "Bleu_3": 0.10240753565680512, "Bleu_4": 0.0736664759780728}, "test": {"Bleu_1": 0.21098003120474793, "Bleu_2": 0.13586558819908817, "Bleu_3": 0.09352885589427087, "Bleu_4": 0.06654178223179057}}
|
eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_itquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.3377340114706079, "Bleu_2": 0.2773134381736893, "Bleu_3": 0.2366137193106164, "Bleu_4": 0.2029996426179, "METEOR": 0.46055200766458787, "ROUGE_L": 0.4452300627333968, "BERTScore": 0.9179433223170008, "MoverScore": 0.8512434937468668, "AnswerF1Score": 79.20970002912067, "AnswerExactMatch": 68.40583519516362}, "test": {"Bleu_1": 0.33661354834612606, "Bleu_2": 0.27955002622610065, "Bleu_3": 0.23793905548976482, "Bleu_4": 0.20207248181734025, "METEOR": 0.44480746009534095, "ROUGE_L": 0.46510146549442927, "BERTScore": 0.9063161925795451, "MoverScore": 0.8304812947806502, "AnswerF1Score": 76.58778740440405, "AnswerExactMatch": 63.884873176501515}}
|
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.2216253207869949, "Bleu_2": 0.14685991225539868, "Bleu_3": 0.10290539705998131, "Bleu_4": 0.07410211123726952, "METEOR": 0.17841245430844613, "ROUGE_L": 0.20985277292570392, "BERTScore": 0.8020776579528849, "MoverScore": 0.5676037052038462}, "test": {"Bleu_1": 0.2203354193979244, "Bleu_2": 0.14309079880332845, "Bleu_3": 0.09898548007038611, "Bleu_4": 0.07061313823722157, "METEOR": 0.16857362153073602, "ROUGE_L": 0.2015478301697681, "BERTScore": 0.7929495583837073, "MoverScore": 0.559154099162796}}
|
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.test.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_sentence.answer.lmqg_qg_itquad.default.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a05685ad9effd2eb3eb7258230edc0e8d7783c1040f8a2a4f4239936f4ba253
|
3 |
+
size 2444587421
|
tokenizer_config.json
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
"single_word": false
|
13 |
},
|
14 |
"model_max_length": 1024,
|
15 |
-
"name_or_path": "lmqg_output/mbart-large-cc25-itquad-qg-ae/
|
16 |
"pad_token": "<pad>",
|
17 |
"sep_token": "</s>",
|
18 |
"special_tokens_map_file": null,
|
|
|
12 |
"single_word": false
|
13 |
},
|
14 |
"model_max_length": 1024,
|
15 |
+
"name_or_path": "lmqg_output/mbart-large-cc25-itquad-qg-ae/model_gljitg/epoch_5",
|
16 |
"pad_token": "<pad>",
|
17 |
"sep_token": "</s>",
|
18 |
"special_tokens_map_file": null,
|
trainer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dataset_path": "lmqg/qg_itquad", "dataset_name": "default", "input_types": ["paragraph_answer", "paragraph_sentence"], "output_types": ["question", "answer"], "prefix_types": ["qg", "ae"], "model": "facebook/mbart-large-cc25", "max_length": 512, "max_length_output": 32, "epoch": 8, "batch": 2, "lr": 0.0001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 32, "label_smoothing": 0.15}
|