metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: en
datasets:
- lmqg/qg_subjqa
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
<hl> Beyonce <hl> further expanded her acting career, starring as blues
singer Etta James in the 2008 musical biopic, Cadillac Records.
example_title: Question Generation Example 1
- text: >-
Beyonce further expanded her acting career, starring as blues singer <hl>
Etta James <hl> in the 2008 musical biopic, Cadillac Records.
example_title: Question Generation Example 2
- text: >-
Beyonce further expanded her acting career, starring as blues singer Etta
James in the 2008 musical biopic, <hl> Cadillac Records <hl> .
example_title: Question Generation Example 3
model-index:
- name: lmqg/bart-base-subjqa-movies
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_subjqa
type: movies
args: movies
metrics:
- name: BLEU4
type: bleu4
value: 0.03889672402129627
- name: ROUGE-L
type: rouge-l
value: 0.25427858933898745
- name: METEOR
type: meteor
value: 0.20553759487964032
- name: BERTScore
type: bertscore
value: 0.9360996422829566
- name: MoverScore
type: moverscore
value: 0.6291293262324851
Language Models Fine-tuning on Question Generation: lmqg/bart-base-subjqa-movies
This model is fine-tuned version of lmqg/bart-base-squad for question generation task on the lmqg/qg_subjqa (dataset_name: movies). This model is continuously fine-tuned with lmqg/bart-base-squad.
Overview
- Language model: lmqg/bart-base-squad
- Language: en
- Training data: lmqg/qg_subjqa (movies)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: TBA
Usage
from transformers import pipeline
model_path = 'lmqg/bart-base-subjqa-movies'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
question = pipe('<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')
Evaluation Metrics
Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_subjqa | movies | 0.039 | 0.254 | 0.206 | 0.936 | 0.629 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_subjqa
- dataset_name: movies
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: lmqg/bart-base-squad
- max_length: 512
- max_length_output: 32
- epoch: 1
- batch: 32
- lr: 5e-05
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
TBA