OpenPhenom / test_huggingface_mae.py
recursionaut's picture
use-relative-imports (#13)
2f82475 verified
import pytest
import torch
# huggingface_openphenom_model_dir = "."
huggingface_modelpath = "recursionpharma/OpenPhenom"
from .huggingface_mae import MAEModel
@pytest.fixture
def huggingface_model():
# This step downloads the model to a local cache, takes a bit to run
huggingface_model = MAEModel.from_pretrained(huggingface_modelpath)
huggingface_model.eval()
return huggingface_model
@pytest.mark.parametrize("C", [1, 4, 6, 11])
@pytest.mark.parametrize("return_channelwise_embeddings", [True, False])
def test_model_predict(huggingface_model, C, return_channelwise_embeddings):
example_input_array = torch.randint(
low=0,
high=255,
size=(2, C, 256, 256),
dtype=torch.uint8,
device=huggingface_model.device,
)
huggingface_model.return_channelwise_embeddings = return_channelwise_embeddings
embeddings = huggingface_model.predict(example_input_array)
expected_output_dim = 384 * C if return_channelwise_embeddings else 384
assert embeddings.shape == (2, expected_output_dim)