import pytest import torch # huggingface_openphenom_model_dir = "." huggingface_modelpath = "recursionpharma/OpenPhenom" from .huggingface_mae import MAEModel @pytest.fixture def huggingface_model(): # This step downloads the model to a local cache, takes a bit to run huggingface_model = MAEModel.from_pretrained(huggingface_modelpath) huggingface_model.eval() return huggingface_model @pytest.mark.parametrize("C", [1, 4, 6, 11]) @pytest.mark.parametrize("return_channelwise_embeddings", [True, False]) def test_model_predict(huggingface_model, C, return_channelwise_embeddings): example_input_array = torch.randint( low=0, high=255, size=(2, C, 256, 256), dtype=torch.uint8, device=huggingface_model.device, ) huggingface_model.return_channelwise_embeddings = return_channelwise_embeddings embeddings = huggingface_model.predict(example_input_array) expected_output_dim = 384 * C if return_channelwise_embeddings else 384 assert embeddings.shape == (2, expected_output_dim)