|
# Masked Autoencoders are Scalable Learners of Cellular Morphology |
|
Official repo for Recursion's accepted spotlight paper at [NeurIPS 2023 Generative AI & Biology workshop](https://openreview.net/group?id=NeurIPS.cc/2023/Workshop/GenBio). |
|
|
|
Paper: https://arxiv.org/abs/2309.16064 |
|
|
|
 |
|
|
|
## Provided code |
|
The baseline Vision Transformer architecture backbone used in this work can be built with the following code snippet from Timm: |
|
``` |
|
import timm.models.vision_transformer as vit |
|
|
|
def vit_base_patch16_256(**kwargs): |
|
default_kwargs = dict( |
|
img_size=256, |
|
in_chans=6, |
|
num_classes=0, |
|
fc_norm=None, |
|
class_token=True, |
|
drop_path_rate=0.1, |
|
init_values=0.0001, |
|
block_fn=vit.ParallelScalingBlock, |
|
qkv_bias=False, |
|
qk_norm=True, |
|
) |
|
for k, v in kwargs.items(): |
|
default_kwargs[k] = v |
|
return vit.vit_base_patch16_224(**default_kwargs) |
|
``` |
|
|
|
Additional code will be released as the date of the workshop gets closer. |
|
|
|
## Provided models |
|
Stay tuned... |
|
|