|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: finetuned_Wav2Vec2_on_ATCOSIM |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetuned_Wav2Vec2_on_ATCOSIM |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1707 |
|
- Wer: 0.1170 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 5 |
|
- total_train_batch_size: 40 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 2.6927 | 2.5 | 400 | 0.5557 | 0.4100 | |
|
| 0.3288 | 4.99 | 800 | 0.2382 | 0.1943 | |
|
| 0.1856 | 7.49 | 1200 | 0.1957 | 0.1699 | |
|
| 0.1325 | 9.99 | 1600 | 0.1845 | 0.1572 | |
|
| 0.1018 | 12.48 | 2000 | 0.1771 | 0.1534 | |
|
| 0.0899 | 14.98 | 2400 | 0.1637 | 0.1356 | |
|
| 0.0722 | 17.48 | 2800 | 0.1812 | 0.1409 | |
|
| 0.0596 | 19.98 | 3200 | 0.1747 | 0.1323 | |
|
| 0.046 | 22.47 | 3600 | 0.1505 | 0.1307 | |
|
| 0.037 | 24.97 | 4000 | 0.1705 | 0.1224 | |
|
| 0.0294 | 27.47 | 4400 | 0.1614 | 0.1164 | |
|
| 0.0249 | 29.96 | 4800 | 0.1707 | 0.1170 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|