anton-l's picture
anton-l HF staff
Upload README.md
095eff5
metadata
license: apache-2.0
language:
  - sl
tags:
  - generated_from_trainer
  - hf-asr-leaderboard
  - robust-speech-event
datasets:
  - common_voice
model-index:
  - name: wav2vec2-large-xls-r-1B-common_voice-sl-ft
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: lv
        metrics:
          - name: Test WER
            type: wer
            value: 23.26
          - name: Test CER
            type: cer
            value: 7.95
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7.0
          type: mozilla-foundation/common_voice_7_0
          args: sl
        metrics:
          - name: Test WER
            type: wer
            value: 13.59
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: sl
        metrics:
          - name: Test WER
            type: wer
            value: 62.71
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: sl
        metrics:
          - name: Test WER
            type: wer
            value: 62.34

wav2vec2-large-xls-r-1B-common_voice-sl-ft

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2112
  • Wer: 0.1404

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8291 12.2 500 0.5674 0.7611
0.0416 24.39 1000 0.3093 0.2964
0.0256 36.59 1500 0.2224 0.2072
0.0179 48.78 2000 0.2274 0.1960
0.0113 60.98 2500 0.2078 0.1582
0.0086 73.17 3000 0.1898 0.1552
0.0059 85.37 3500 0.2054 0.1446
0.0044 97.56 4000 0.2112 0.1404

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.10.3