metadata
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
language:
- en
license: apache-2.0
tags:
- llama-cpp
- gguf-my-repo
widget:
- example_title: Fibonacci (Python)
messages:
- role: system
content: You are a chatbot who can help code!
- role: user
content: >-
Write me a function to calculate the first 10 digits of the fibonacci
sequence in Python and print it out to the CLI.
reach-vb/TinyLlama-1.1B-Chat-v1.0-Q2_K-GGUF
This model was converted to GGUF format from TinyLlama/TinyLlama-1.1B-Chat-v1.0
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo reach-vb/TinyLlama-1.1B-Chat-v1.0-Q2_K-GGUF --hf-file tinyllama-1.1b-chat-v1.0-q2_k.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo reach-vb/TinyLlama-1.1B-Chat-v1.0-Q2_K-GGUF --hf-file tinyllama-1.1b-chat-v1.0-q2_k.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo reach-vb/TinyLlama-1.1B-Chat-v1.0-Q2_K-GGUF --hf-file tinyllama-1.1b-chat-v1.0-q2_k.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo reach-vb/TinyLlama-1.1B-Chat-v1.0-Q2_K-GGUF --hf-file tinyllama-1.1b-chat-v1.0-q2_k.gguf -c 2048