|
--- |
|
datasets: |
|
- rcds/MultiLegalNeg |
|
language: |
|
- de |
|
- fr |
|
- it |
|
- en |
|
tags: |
|
- legal |
|
--- |
|
|
|
# Model Card for joelito/legal-swiss-longformer-base |
|
|
|
This model is based on [XLM-R-Base](https://huggingface.co/xlm-roberta-base). |
|
It was pretrained on negation scope resolution using [NegBERT](https://github.com/adityak6798/Transformers-For-Negation-and-Speculation/blob/master/Transformers_for_Negation_and_Speculation.ipynb) ([Khandelwal and Sawant 2020](https://arxiv.org/abs/1911.04211)) |
|
For training we used the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg), a multilingual dataset of legal data annotated for negation cues and scopes, ConanDoyle-neg ([ |
|
Morante and Blanco. 2012](https://aclanthology.org/S12-1035/)), SFU Review ([Konstantinova et al. 2012](http://www.lrec-conf.org/proceedings/lrec2012/pdf/533_Paper.pdf)), BioScope ([Szarvas et al. 2008](https://aclanthology.org/W08-0606/)) and Dalloux ([Dalloux et al. 2020](https://clementdalloux.fr/?page_id=28)). |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
- **Model type:** Transformer-based language model (XLM-R-base) |
|
- **Languages:** de, fr, it, en |
|
- **License:** CC BY-SA |
|
- **Finetune Task:** Negation Scope Resolution |
|
|
|
## Uses |
|
|
|
See [LegalNegBERT](https://github.com/RamonaChristen/Multilingual_Negation_Scope_Resolution_on_Legal_Data/blob/main/LegalNegBERT) for details on the training process and how to use this model. |
|
|
|
### Recommendations |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. |
|
|
|
|
|
### Training Data |
|
|
|
This model was pretrained on the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg) |
|
|
|
## Evaluation |
|
|
|
We evaluate neg-xlm-roberta-base on the test sets in the [Multi Legal Neg Dataset](https://huggingface.co/datasets/rcds/MultiLegalNeg). |
|
| \_Test Dataset | F1-score | |
|
| :------------------------- | :-------- | |
|
| fr | 92.49 | |
|
| it | 88.81 | |
|
| de (DE) | 95.66 | |
|
| de (CH) | 87.82 | |
|
| SFU Review | 88.53 | |
|
| ConanDoyle-neg | 90.47 | |
|
| BioScope | 95.59 | |
|
| Dalloux | 93.99 | |
|
|
|
|
|
#### Software |
|
|
|
pytorch, transformers. |
|
|
|
## Citation |
|
Please cite the following preprint: |
|
|
|
``` |
|
@misc{christen2023resolving, |
|
title={Resolving Legalese: A Multilingual Exploration of Negation Scope Resolution in Legal Documents}, |
|
author={Ramona Christen and Anastassia Shaitarova and Matthias Stürmer and Joel Niklaus}, |
|
year={2023}, |
|
eprint={2309.08695}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |