razerblade072611 commited on
Commit
18db904
·
1 Parent(s): b21e42d

Upload 9 files

Browse files
README (1).md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - text generation
6
+ - pytorch
7
+ - causal-lm
8
+ license: mit
9
+ datasets:
10
+ - the_pile
11
+ ---
12
+
13
+ # GPT-Neo 125M
14
+
15
+ ## Model Description
16
+
17
+ GPT-Neo 125M is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 125M represents the number of parameters of this particular pre-trained model.
18
+
19
+ ## Training data
20
+
21
+ GPT-Neo 125M was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model.
22
+
23
+ ## Training procedure
24
+
25
+ This model was trained on the Pile for 300 billion tokens over 572,300 steps. It was trained as a masked autoregressive language model, using cross-entropy loss.
26
+
27
+ ## Intended Use and Limitations
28
+
29
+ This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.
30
+
31
+ ### How to use
32
+
33
+ You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
34
+
35
+ ```py
36
+ >>> from transformers import pipeline
37
+ >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
38
+ >>> generator("EleutherAI has", do_sample=True, min_length=20)
39
+
40
+ [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}]
41
+ ```
42
+
43
+ ### Limitations and Biases
44
+
45
+ GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work.
46
+
47
+ GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.
48
+
49
+ As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
50
+
51
+ ## Eval results
52
+
53
+ TBD
54
+
55
+ ### Down-Stream Applications
56
+
57
+ TBD
58
+
59
+ ### BibTeX entry and citation info
60
+
61
+ To cite this model, use
62
+ ```bibtex
63
+
64
+ @software{gpt-neo,
65
+
66
+ author = {Black, Sid and
67
+ Leo, Gao and
68
+ Wang, Phil and
69
+ Leahy, Connor and
70
+ Biderman, Stella},
71
+ title = {{GPT-Neo: Large Scale Autoregressive Language
72
+ Modeling with Mesh-Tensorflow}},
73
+ month = mar,
74
+ year = 2021,
75
+ note = {{If you use this software, please cite it using
76
+ these metadata.}},
77
+ publisher = {Zenodo},
78
+ version = {1.0},
79
+ doi = {10.5281/zenodo.5297715},
80
+ url = {https://doi.org/10.5281/zenodo.5297715}
81
+ }
82
+
83
+ @article{gao2020pile,
84
+ title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling},
85
+ author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others},
86
+ journal={arXiv preprint arXiv:2101.00027},
87
+ year={2020}
88
+ }
89
+
90
+ ```
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "gelu_new",
3
+ "architectures": [
4
+ "GPTNeoForCausalLM"
5
+ ],
6
+ "attention_dropout": 0,
7
+ "attention_layers": [
8
+ "global",
9
+ "local",
10
+ "global",
11
+ "local",
12
+ "global",
13
+ "local",
14
+ "global",
15
+ "local",
16
+ "global",
17
+ "local",
18
+ "global",
19
+ "local"
20
+ ],
21
+ "attention_types": [
22
+ [
23
+ [
24
+ "global",
25
+ "local"
26
+ ],
27
+ 6
28
+ ]
29
+ ],
30
+ "bos_token_id": 50256,
31
+ "embed_dropout": 0,
32
+ "eos_token_id": 50256,
33
+ "gradient_checkpointing": false,
34
+ "hidden_size": 768,
35
+ "initializer_range": 0.02,
36
+ "intermediate_size": null,
37
+ "layer_norm_epsilon": 1e-05,
38
+ "max_position_embeddings": 2048,
39
+ "model_type": "gpt_neo",
40
+ "num_heads": 12,
41
+ "num_layers": 12,
42
+ "resid_dropout": 0,
43
+ "summary_activation": null,
44
+ "summary_first_dropout": 0.1,
45
+ "summary_proj_to_labels": true,
46
+ "summary_type": "cls_index",
47
+ "summary_use_proj": true,
48
+ "transformers_version": "4.9.0.dev0",
49
+ "use_cache": true,
50
+ "vocab_size": 50257,
51
+ "window_size": 256
52
+ }
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:809abd2ae40854e092d5b9f64fcc6789a572ec519ce9aa10346f69d1de321e88
3
+ size 500800120
gitattributes.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.arrow filter=lfs diff=lfs merge=lfs -text
10
+ *.ftz filter=lfs diff=lfs merge=lfs -text
11
+ *.joblib filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.pb filter=lfs diff=lfs merge=lfs -text
15
+ *.pt filter=lfs diff=lfs merge=lfs -text
16
+ *.pth filter=lfs diff=lfs merge=lfs -text
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b38c2b2761e95b7bbd736e49a7ba553b8015bd3c0036b749043e1cebee464ed
3
+ size 526017373
rust_model.ot ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7369f7836f7a618fce3570511d216b03b1b5a728ae0170c135049f9440e5305
3
+ size 526014685
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"errors": "replace", "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 2048, "special_tokens_map_file": null, "name_or_path": "gpt2"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff