astro-seg / model.py
rayh's picture
Uisng the model.py approach
2b50ca3 unverified
raw
history blame
1.1 kB
import numpy as np
import onnxruntime as ort
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
class YOLOSegmentationModel:
def __init__(self):
# Download and load the ONNX model from Hugging Face Hub
model_path = hf_hub_download(repo_id="rayh/astro-seg", filename="astro-yolo11m-seg.onnx")
self.session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
def preprocess(self, image: Image.Image):
# Convert image to RGB and preprocess for ONNX model
input_array = np.array(image.convert("RGB")).astype(np.float32)
input_array = np.expand_dims(input_array, axis=0) # Add batch dimension
return input_array
def predict(self, image: Image.Image):
input_tensor = self.preprocess(image)
outputs = self.session.run(None, {"images": input_tensor})
return outputs # Modify if needed to return bounding boxes/masks
model = YOLOSegmentationModel()
# HF Inference API expects a `predict` function
def predict(image: Image.Image):
return model.predict(image)