ravikumar101 commited on
Commit
030c39a
·
verified ·
1 Parent(s): 666e0e0

Upload 17 files

Browse files
config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/ubuntu/.cache/huggingface/hub/models--openbmb--MiniCPM-Llama3-V-2_5/snapshots/287e3f85192a7c4acf2564fc6bda0637439a9d78",
3
+ "architectures": [
4
+ "MiniCPMV"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_minicpm.MiniCPMVConfig",
10
+ "AutoModel": "modeling_minicpmv.MiniCPMV",
11
+ "AutoModelForCausalLM": "modeling_minicpmv.MiniCPMV"
12
+ },
13
+ "batch_vision_input": true,
14
+ "bos_token_id": 128000,
15
+ "drop_vision_last_layer": false,
16
+ "eos_token_id": 128001,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 4096,
19
+ "image_size": 448,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 14336,
22
+ "max_position_embeddings": 8192,
23
+ "mlp_bias": false,
24
+ "mm_use_im_start_end": true,
25
+ "model_type": "minicpmv",
26
+ "num_attention_heads": 32,
27
+ "num_hidden_layers": 32,
28
+ "num_key_value_heads": 8,
29
+ "patch_size": 14,
30
+ "pretraining_tp": 1,
31
+ "quantization_config": {
32
+ "bits": 4,
33
+ "group_size": 128,
34
+ "quant_method": "awq",
35
+ "version": "gemm",
36
+ "zero_point": true
37
+ },
38
+ "query_num": 96,
39
+ "rms_norm_eps": 1e-05,
40
+ "rope_scaling": null,
41
+ "rope_theta": 500000.0,
42
+ "slice_config": {
43
+ "max_slice_nums": 9,
44
+ "model_type": "minicpmv"
45
+ },
46
+ "slice_mode": true,
47
+ "tie_word_embeddings": false,
48
+ "torch_dtype": "float16",
49
+ "transformers_version": "4.43.2",
50
+ "use_cache": false,
51
+ "version": "2.5",
52
+ "vision_config": {
53
+ "hidden_size": 1152,
54
+ "image_size": 980,
55
+ "intermediate_size": 4304,
56
+ "model_type": "idefics2",
57
+ "num_attention_heads": 16,
58
+ "num_hidden_layers": 27,
59
+ "patch_size": 14
60
+ },
61
+ "vocab_size": 128256
62
+ }
configuration_minicpm.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ MiniCPM model configuration"""
21
+ import os
22
+ from typing import Union
23
+
24
+ from transformers.utils import logging
25
+ from transformers import LlamaConfig, PretrainedConfig
26
+ from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionConfig
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ class MiniCPMVSliceConfig(PretrainedConfig):
32
+ model_type = "minicpmv"
33
+
34
+ def __init__(
35
+ self,
36
+ patch_size=14,
37
+ max_slice_nums=9,
38
+ scale_resolution=448,
39
+ **kwargs,
40
+ ):
41
+ super().__init__(**kwargs)
42
+ self.patch_size = patch_size
43
+ self.max_slice_nums = max_slice_nums
44
+ self.scale_resolution = scale_resolution
45
+
46
+ @classmethod
47
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
48
+ cls._set_token_in_kwargs(kwargs)
49
+
50
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
51
+
52
+ if config_dict.get("model_type") == "minicpmv":
53
+ config_dict = config_dict["slice_config"]
54
+
55
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
56
+ logger.warning(
57
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
58
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
59
+ )
60
+
61
+ return cls.from_dict(config_dict, **kwargs)
62
+
63
+
64
+
65
+ class MiniCPMVConfig(LlamaConfig):
66
+ model_type = "minicpmv"
67
+ keys_to_ignore_at_inference = ["past_key_values"]
68
+
69
+ default_vision_config = {
70
+ "hidden_size": 1152,
71
+ "image_size": 980,
72
+ "intermediate_size": 4304,
73
+ "model_type": "idefics2",
74
+ "num_attention_heads": 16,
75
+ "num_hidden_layers": 27,
76
+ "patch_size": 14,
77
+ }
78
+
79
+ def __init__(
80
+ self,
81
+ use_cache=True,
82
+ query_num=64,
83
+ image_size=448,
84
+ drop_vision_last_layer=True,
85
+ batch_vision_input=True,
86
+ slice_config=None,
87
+ vision_config=None,
88
+ **kwargs,
89
+ ):
90
+ self.use_cache = use_cache
91
+ self.query_num = query_num
92
+ self.image_size = image_size
93
+ self.drop_vision_last_layer = drop_vision_last_layer
94
+ self.batch_vision_input = batch_vision_input
95
+
96
+ if slice_config is None:
97
+ self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
98
+ else:
99
+ self.slice_config = MiniCPMVSliceConfig(**slice_config)
100
+ self.slice_mode = True
101
+
102
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
103
+ if vision_config is None:
104
+ self.vision_config = Idefics2VisionConfig(**self.default_vision_config)
105
+ logger.info("vision_config is None, using default vision config")
106
+ elif isinstance(vision_config, dict):
107
+ self.vision_config = Idefics2VisionConfig(**vision_config)
108
+ elif isinstance(vision_config, Idefics2VisionConfig):
109
+ self.vision_config = vision_config
110
+
111
+ self.patch_size = self.vision_config.patch_size
112
+
113
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": 128001,
5
+ "transformers_version": "4.40.0"
6
+ }
image_processing_minicpmv.py ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union, Dict, Any
2
+
3
+ import torch
4
+ import math
5
+ import PIL.Image
6
+ import PIL.ImageSequence
7
+ import numpy as np
8
+ import PIL
9
+ from PIL import Image
10
+
11
+ from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
12
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
13
+ from transformers import AutoImageProcessor
14
+ from transformers.image_transforms import to_channel_dimension_format
15
+ from transformers.image_utils import (
16
+ ImageInput,
17
+ make_list_of_images,
18
+ valid_images,
19
+ is_torch_tensor,
20
+ to_numpy_array,
21
+ infer_channel_dimension_format,
22
+ ChannelDimension
23
+ )
24
+
25
+
26
+ def recursive_converter(converter, value):
27
+ if isinstance(value, list):
28
+ new_value = []
29
+ for v in value:
30
+ new_value += [recursive_converter(converter, v)]
31
+ return new_value
32
+ else:
33
+ return converter(value)
34
+
35
+
36
+ class MiniCPMVBatchFeature(BatchFeature):
37
+ r"""
38
+ Extend from BatchFeature for supporting various image size
39
+ """
40
+ def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
41
+ super().__init__(data)
42
+ self.convert_to_tensors(tensor_type=tensor_type)
43
+
44
+ def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
45
+ if tensor_type is None:
46
+ return self
47
+
48
+ is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
49
+
50
+ def converter(value):
51
+ try:
52
+ if not is_tensor(value):
53
+ tensor = as_tensor(value)
54
+ return tensor
55
+ except: # noqa E722
56
+ if key == "overflowing_values":
57
+ raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
58
+ raise ValueError(
59
+ "Unable to create tensor, you should probably activate padding "
60
+ "with 'padding=True' to have batched tensors with the same length."
61
+ )
62
+
63
+
64
+ for key, value in self.items():
65
+ self[key] = recursive_converter(converter, value)
66
+ return self
67
+
68
+ def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
69
+ requires_backends(self, ["torch"])
70
+ import torch
71
+
72
+ def cast_tensor(v):
73
+ # check if v is a floating point
74
+ if torch.is_floating_point(v):
75
+ # cast and send to device
76
+ return v.to(*args, **kwargs)
77
+ elif device is not None:
78
+ return v.to(device=device)
79
+ else:
80
+ return v
81
+
82
+ new_data = {}
83
+ device = kwargs.get("device")
84
+ # Check if the args are a device or a dtype
85
+ if device is None and len(args) > 0:
86
+ # device should be always the first argument
87
+ arg = args[0]
88
+ if is_torch_dtype(arg):
89
+ # The first argument is a dtype
90
+ pass
91
+ elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
92
+ device = arg
93
+ else:
94
+ # it's something else
95
+ raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
96
+ # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
97
+ for k, v in self.items():
98
+ new_data[k] = recursive_converter(cast_tensor, v)
99
+ self.data = new_data
100
+ return self
101
+
102
+
103
+ class MiniCPMVImageProcessor(BaseImageProcessor):
104
+ model_input_names = ["pixel_values"]
105
+
106
+ def __init__(
107
+ self,
108
+ max_slice_nums=9,
109
+ scale_resolution=448,
110
+ patch_size=14,
111
+ **kwargs):
112
+ super().__init__(**kwargs)
113
+ self.max_slice_nums = max_slice_nums
114
+ self.scale_resolution = scale_resolution
115
+ self.patch_size = patch_size
116
+ self.image_feature_size = kwargs.pop("image_feature_size", 64)
117
+ self.im_start_token = kwargs.pop("im_start", "<image>")
118
+ self.im_end_token = kwargs.pop("im_end", "</image>")
119
+ self.slice_start_token = kwargs.pop("slice_start", "<slice>")
120
+ self.slice_end_token = kwargs.pop("slice_end", "</slice>")
121
+ self.unk_token = kwargs.pop("unk", "<unk>")
122
+ self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
123
+ self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
124
+ self.version = kwargs.pop("version", 2.0)
125
+
126
+ def ensure_divide(self, length, patch_size):
127
+ return max(round(length / patch_size) * patch_size, patch_size)
128
+
129
+ def find_best_resize(self,
130
+ original_size,
131
+ scale_resolution,
132
+ patch_size,
133
+ allow_upscale=False):
134
+ width, height = original_size
135
+ if (width * height >
136
+ scale_resolution * scale_resolution) or allow_upscale:
137
+ r = width / height
138
+ height = int(scale_resolution / math.sqrt(r))
139
+ width = int(height * r)
140
+ best_width = self.ensure_divide(width, patch_size)
141
+ best_height = self.ensure_divide(height, patch_size)
142
+ return (best_width, best_height)
143
+
144
+ def get_refine_size(self,
145
+ original_size,
146
+ grid,
147
+ scale_resolution,
148
+ patch_size,
149
+ allow_upscale=False):
150
+ width, height = original_size
151
+ grid_x, grid_y = grid
152
+
153
+ refine_width = self.ensure_divide(width, grid_x)
154
+ refine_height = self.ensure_divide(height, grid_y)
155
+
156
+ grid_width = refine_width / grid_x
157
+ grid_height = refine_height / grid_y
158
+
159
+ best_grid_size = self.find_best_resize((grid_width, grid_height),
160
+ scale_resolution,
161
+ patch_size,
162
+ allow_upscale=allow_upscale)
163
+ refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
164
+ return refine_size
165
+
166
+ def split_to_patches(self, image, grid):
167
+ patches = []
168
+ width, height = image.size
169
+ grid_x = int(width / grid[0])
170
+ grid_y = int(height / grid[1])
171
+ for i in range(0, height, grid_y):
172
+ images = []
173
+ for j in range(0, width, grid_x):
174
+ box = (j, i, j + grid_x, i + grid_y)
175
+ patch = image.crop(box)
176
+ images.append(patch)
177
+ patches.append(images)
178
+ return patches
179
+
180
+ def slice_image(
181
+ self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
182
+ ):
183
+ original_size = image.size
184
+ original_width, original_height = original_size
185
+ log_ratio = math.log(original_width / original_height)
186
+ ratio = original_width * original_height / (scale_resolution * scale_resolution)
187
+ multiple = min(math.ceil(ratio), max_slice_nums)
188
+
189
+ source_image = None
190
+ best_grid = None
191
+ patches = []
192
+
193
+ if multiple <= 1 or never_split:
194
+ # dont need to slice, upsample
195
+ best_size = self.find_best_resize(
196
+ original_size, scale_resolution, patch_size, allow_upscale=True
197
+ )
198
+ source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
199
+ else:
200
+ candidate_split_grids_nums = []
201
+ for i in [multiple - 1, multiple, multiple + 1]:
202
+ if i == 1 or i > max_slice_nums:
203
+ continue
204
+ candidate_split_grids_nums.append(i)
205
+
206
+ # source image, down-sampling and ensure divided by patch_size
207
+ best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
208
+ source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
209
+ candidate_grids = []
210
+
211
+ # find best grid
212
+ for split_grids_nums in candidate_split_grids_nums:
213
+ m = 1
214
+ while m <= split_grids_nums:
215
+ if split_grids_nums % m == 0:
216
+ candidate_grids.append([m, split_grids_nums // m])
217
+ m += 1
218
+
219
+ best_grid = [1, 1]
220
+ min_error = float("inf")
221
+ for grid in candidate_grids:
222
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
223
+ if error < min_error:
224
+ best_grid = grid
225
+ min_error = error
226
+
227
+ refine_size = self.get_refine_size(
228
+ original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
229
+ )
230
+
231
+ refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
232
+ patches = self.split_to_patches(refine_image, best_grid)
233
+
234
+ return source_image, patches, best_grid
235
+
236
+ def get_grid_placeholder(self, grid):
237
+ if grid is None:
238
+ return ""
239
+ image_placeholder = (
240
+ self.im_start_token
241
+ + self.unk_token * self.image_feature_size
242
+ + self.im_end_token
243
+ )
244
+
245
+ cols = grid[0]
246
+ rows = grid[1]
247
+ slices = []
248
+ for i in range(rows):
249
+ lines = []
250
+ for j in range(cols):
251
+ lines.append(image_placeholder)
252
+ slices.append("".join(lines))
253
+
254
+ slice_placeholder = self.slice_start_token + "\n".join(slices) + self.slice_end_token
255
+ return slice_placeholder
256
+
257
+ def get_sliced_images(self, image):
258
+ slice_images = []
259
+
260
+ source_image, patches, sliced_grid = self.slice_image(
261
+ image,
262
+ self.max_slice_nums, # default: 9
263
+ self.scale_resolution, # default: 448
264
+ self.patch_size # default: 14
265
+ )
266
+ slice_images.append(source_image)
267
+
268
+ if len(patches) > 0:
269
+ for i in range(len(patches)):
270
+ for j in range(len(patches[0])):
271
+ slice_images.append(patches[i][j])
272
+ return slice_images
273
+
274
+ def get_sliced_grid(self, image_size):
275
+ original_width, original_height = image_size
276
+ log_ratio = math.log(original_width / original_height)
277
+ ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
278
+ multiple = min(math.ceil(ratio), self.max_slice_nums)
279
+ if multiple <= 1:
280
+ return None
281
+ candidate_split_grids_nums = []
282
+ for i in [multiple - 1, multiple, multiple + 1]:
283
+ if i == 1 or i > self.max_slice_nums:
284
+ continue
285
+ candidate_split_grids_nums.append(i)
286
+
287
+ candidate_grids = []
288
+ for split_grids_nums in candidate_split_grids_nums:
289
+ m = 1
290
+ while m <= split_grids_nums:
291
+ if split_grids_nums % m == 0:
292
+ candidate_grids.append([m, split_grids_nums // m])
293
+ m += 1
294
+
295
+ best_grid = [1, 1]
296
+ min_error = float("inf")
297
+ for grid in candidate_grids:
298
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
299
+ if error < min_error:
300
+ best_grid = grid
301
+ min_error = error
302
+
303
+ return best_grid
304
+
305
+ def get_slice_image_placeholder(self, image_size):
306
+ grid = self.get_sliced_grid(image_size=image_size)
307
+ return (
308
+ self.im_start_token
309
+ + self.unk_token * self.image_feature_size
310
+ + self.im_end_token
311
+ ) + self.get_grid_placeholder(grid=grid)
312
+
313
+ def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
314
+ """
315
+ Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
316
+ needed.
317
+
318
+ Args:
319
+ image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
320
+ The image to convert to the PIL Image format.
321
+ rescale (`bool`, *optional*):
322
+ Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
323
+ default to `True` if the image type is a floating type, `False` otherwise.
324
+ """
325
+ if isinstance(image, PIL.Image.Image):
326
+ return image
327
+ if is_torch_tensor(image):
328
+ image = image.numpy()
329
+
330
+ if isinstance(image, np.ndarray):
331
+ if rescale is None:
332
+ # rescale default to the array being of floating type.
333
+ rescale = isinstance(image.flat[0], np.floating)
334
+ # If the channel as been moved to first dim, we put it back at the end.
335
+ if image.ndim == 3 and image.shape[0] in [1, 3]:
336
+ image = image.transpose(1, 2, 0)
337
+ if rescale:
338
+ image = image * 255
339
+ image = image.astype(np.uint8)
340
+ return PIL.Image.fromarray(image)
341
+ return image
342
+
343
+ def reshape_by_patch(self, image):
344
+ """
345
+ :param image: shape [3, H, W]
346
+ :param patch_size:
347
+ :return: [3, patch_size, HW/patch_size]
348
+ """
349
+ image = torch.from_numpy(image)
350
+ patch_size = self.patch_size
351
+ patches = torch.nn.functional.unfold(
352
+ image,
353
+ (patch_size, patch_size),
354
+ stride=(patch_size, patch_size)
355
+ )
356
+
357
+ patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
358
+ patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
359
+ return patches.numpy()
360
+
361
+ def preprocess(
362
+ self,
363
+ images: ImageInput,
364
+ do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
365
+ return_tensors: Optional[Union[str, TensorType]] = None
366
+ ) -> MiniCPMVBatchFeature:
367
+ images = make_list_of_images(images)
368
+
369
+ if not valid_images(images):
370
+ raise ValueError(
371
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
372
+ "torch.Tensor, tf.Tensor or jax.ndarray."
373
+ )
374
+
375
+ images = [self.to_pil_image(image).convert("RGB") for image in images]
376
+ input_data_format = infer_channel_dimension_format(np.array(images[0]))
377
+
378
+ new_images = []
379
+ image_sizes = [image.size for image in images]
380
+ tgt_sizes = []
381
+ for image in images:
382
+ image_patches = self.get_sliced_images(image)
383
+ image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
384
+ image_patches = [
385
+ self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
386
+ for image in image_patches
387
+ ]
388
+ image_patches = [
389
+ to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
390
+ for image in image_patches
391
+ ]
392
+ for slice_image in image_patches:
393
+ new_images.append(self.reshape_by_patch(slice_image))
394
+ tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))
395
+
396
+ if tgt_sizes:
397
+ tgt_sizes = np.vstack(tgt_sizes)
398
+ return MiniCPMVBatchFeature(
399
+ data={"pixel_values": [new_images], "image_sizes": [image_sizes], "tgt_sizes": [tgt_sizes]}, tensor_type=return_tensors
400
+ )
401
+
402
+ AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
inputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15cbaeb1d16bac141f95b5cbce443313c21e54107a8c68411abbad47894f0556
3
+ size 12766558
key_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f301e8a70b4e149554ae561e82df4405012e0546a9456a61a6d4e5fe5a758307
3
+ size 223422
modeling_minicpmv.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import json
3
+ import torch
4
+ from threading import Thread
5
+ from copy import deepcopy
6
+ from PIL import Image
7
+ from torchvision import transforms
8
+ from transformers import LlamaPreTrainedModel, LlamaForCausalLM, TextIteratorStreamer
9
+ from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
10
+ from transformers import AutoProcessor
11
+
12
+ from .configuration_minicpm import MiniCPMVConfig
13
+ from .resampler import Resampler
14
+
15
+ IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_MEAN
16
+ IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_STD
17
+
18
+ class MiniCPMVPreTrainedModel(LlamaPreTrainedModel):
19
+ config_class = MiniCPMVConfig
20
+
21
+
22
+ class MiniCPMV(MiniCPMVPreTrainedModel):
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+
26
+ self.llm = LlamaForCausalLM(config)
27
+ self.vpm = self.init_vision_module()
28
+ self.vision_dim = self.vpm.embed_dim
29
+ self.embed_dim = self.llm.config.hidden_size
30
+ self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
31
+ self.transform = self.init_transform()
32
+
33
+ def init_vision_module(self):
34
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
35
+ model = Idefics2VisionTransformer(self.config.vision_config)
36
+ if self.config.drop_vision_last_layer:
37
+ model.encoder.layers = model.encoder.layers[:-1]
38
+
39
+ setattr(model, 'embed_dim', model.embeddings.embed_dim)
40
+ setattr(model, 'patch_size', model.embeddings.patch_size)
41
+
42
+ return model
43
+
44
+ def init_resampler(self, embed_dim, vision_dim):
45
+ return Resampler(
46
+ num_queries=self.config.query_num,
47
+ embed_dim=embed_dim,
48
+ num_heads=embed_dim // 128,
49
+ kv_dim=vision_dim,
50
+ adaptive=True
51
+ )
52
+
53
+ def init_transform(self):
54
+ return transforms.Compose(
55
+ [
56
+ transforms.ToTensor(),
57
+ transforms.Normalize(
58
+ mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
59
+ ),
60
+ ]
61
+ )
62
+
63
+ def get_input_embeddings(self):
64
+ return self.llm.get_input_embeddings()
65
+
66
+ def set_input_embeddings(self, value):
67
+ self.llm.embed_tokens = value
68
+
69
+ def get_output_embeddings(self):
70
+ return self.llm.lm_head
71
+
72
+ def set_output_embeddings(self, new_embeddings):
73
+ self.llm.lm_head = new_embeddings
74
+
75
+ def set_decoder(self, decoder):
76
+ self.llm = decoder
77
+
78
+ def get_decoder(self):
79
+ return self.llm
80
+
81
+ def get_vllm_embedding(self, data):
82
+ if 'vision_hidden_states' not in data:
83
+ dtype = self.llm.model.embed_tokens.weight.dtype
84
+ device = self.llm.model.embed_tokens.weight.device
85
+ tgt_sizes = data['tgt_sizes']
86
+ pixel_values_list = data['pixel_values']
87
+ vision_hidden_states = []
88
+ all_pixel_values = []
89
+ img_cnt = []
90
+ for pixel_values in pixel_values_list:
91
+ img_cnt.append(len(pixel_values))
92
+ all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
93
+
94
+ # exist image
95
+ if all_pixel_values:
96
+ tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
97
+
98
+ if self.config.batch_vision_input:
99
+ max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
100
+
101
+ all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
102
+ padding_value=0.0)
103
+ B, L, _ = all_pixel_values.shape
104
+ all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
105
+
106
+ patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
107
+ for i in range(B):
108
+ patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
109
+
110
+ vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state
111
+ vision_embedding = self.resampler(vision_embedding, tgt_sizes)
112
+ else:
113
+ # get vision_embedding foreach
114
+ vision_embedding = []
115
+ for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values):
116
+ single_pixel_values = single_pixel_values.unsqueeze(0)
117
+ B, L, _ = single_pixel_values.shape
118
+ single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
119
+ single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
120
+ single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
121
+ vision_embedding.append(single_vision_embedding)
122
+ vision_embedding = torch.vstack(vision_embedding)
123
+
124
+ start = 0
125
+ for pixel_values in pixel_values_list:
126
+ img_cnt = len(pixel_values)
127
+ if img_cnt > 0:
128
+ vision_hidden_states.append(vision_embedding[start: start + img_cnt])
129
+ start += img_cnt
130
+ else:
131
+ vision_hidden_states.append([])
132
+ else: # no image
133
+ if self.training:
134
+ dummy_image = torch.zeros(
135
+ (1, 3, 224, 224),
136
+ device=device, dtype=dtype
137
+ )
138
+ tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
139
+ dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
140
+ else:
141
+ dummy_feature = []
142
+ for _ in range(len(pixel_values_list)):
143
+ vision_hidden_states.append(dummy_feature)
144
+
145
+ else:
146
+ vision_hidden_states = data['vision_hidden_states']
147
+
148
+ if hasattr(self.llm.config, 'scale_emb'):
149
+ vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
150
+ else:
151
+ vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
152
+
153
+ vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
154
+ i, torch.Tensor) else i for i in vision_hidden_states]
155
+
156
+ bs = len(data['input_ids'])
157
+ for i in range(bs):
158
+ cur_vs_hs = vision_hidden_states[i]
159
+ if len(cur_vs_hs) > 0:
160
+ cur_vllm_emb = vllm_embedding[i]
161
+ cur_image_bound = data['image_bound'][i]
162
+ if len(cur_image_bound) > 0:
163
+ image_indices = torch.stack(
164
+ [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
165
+ ).to(vllm_embedding.device)
166
+
167
+ cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
168
+ cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
169
+ elif self.training:
170
+ cur_vllm_emb += cur_vs_hs[0].mean() * 0
171
+
172
+ return vllm_embedding, vision_hidden_states
173
+
174
+ def forward(self, data, **kwargs):
175
+ vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
176
+ position_ids = data["position_ids"]
177
+ if position_ids.dtype != torch.int64:
178
+ position_ids = position_ids.long()
179
+
180
+ return self.llm(
181
+ input_ids=None,
182
+ position_ids=position_ids,
183
+ inputs_embeds=vllm_embedding,
184
+ **kwargs
185
+ )
186
+
187
+ def _decode_text(self, result_ids, tokenizer):
188
+ result_text = []
189
+ for result in result_ids:
190
+ result = result[result != 0]
191
+ if result[0] == tokenizer.bos_id:
192
+ result = result[1:]
193
+ if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
194
+ result = result[:-1]
195
+ result_text.append(tokenizer.decode(result).strip())
196
+ return result_text
197
+
198
+ def _decode(self, inputs_embeds, tokenizer, decode_text=False, **kwargs):
199
+ terminators = [
200
+ tokenizer.eos_token_id,
201
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
202
+ ]
203
+ output = self.llm.generate(
204
+ inputs_embeds=inputs_embeds,
205
+ pad_token_id=0,
206
+ eos_token_id=terminators,
207
+ **kwargs
208
+ )
209
+ if decode_text:
210
+ return self._decode_text(output, tokenizer)
211
+ return output
212
+
213
+ def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
214
+ terminators = [
215
+ tokenizer.eos_token_id,
216
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
217
+ ]
218
+ streamer = TextIteratorStreamer(tokenizer=tokenizer)
219
+ generation_kwargs = {
220
+ 'inputs_embeds': inputs_embeds,
221
+ 'pad_token_id': 0,
222
+ 'eos_token_id': terminators,
223
+ 'streamer': streamer
224
+ }
225
+ generation_kwargs.update(kwargs)
226
+
227
+ thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
228
+ thread.start()
229
+
230
+ return streamer
231
+
232
+ def generate(
233
+ self,
234
+ model_inputs,
235
+ tokenizer=None,
236
+ vision_hidden_states=None,
237
+ stream=False,
238
+ **kwargs
239
+ ):
240
+ bs = len(model_inputs["input_ids"])
241
+ img_list = model_inputs["pixel_values"]
242
+ tgt_sizes = model_inputs["tgt_sizes"]
243
+ if img_list is None:
244
+ img_list = [[] for i in range(bs)]
245
+ assert bs == len(img_list)
246
+ if vision_hidden_states is None:
247
+ pixel_values = []
248
+ for i in range(bs):
249
+ img_inps = []
250
+ for img in img_list[i]:
251
+ img_inps.append(img.to(self.device))
252
+ if img_inps:
253
+ pixel_values.append(img_inps)
254
+ else:
255
+ pixel_values.append([])
256
+ model_inputs["pixel_values"] = pixel_values
257
+ model_inputs['tgt_sizes'] = tgt_sizes
258
+ else:
259
+ model_inputs["vision_hidden_states"] = vision_hidden_states
260
+
261
+ (
262
+ input_embeds,
263
+ vision_hidden_states,
264
+ ) = self.get_vllm_embedding(model_inputs)
265
+
266
+ # output_ids = self._decode(input_embeds, tokenizer, **kwargs)
267
+ if stream:
268
+ kwargs.pop("decode_text")
269
+ result = self._decode_stream(input_embeds, tokenizer, **kwargs)
270
+ else:
271
+ result = self._decode(input_embeds, tokenizer, **kwargs)
272
+
273
+ return result
274
+
275
+ def chat(
276
+ self,
277
+ image,
278
+ msgs,
279
+ tokenizer,
280
+ processor=None,
281
+ vision_hidden_states=None,
282
+ max_new_tokens=1024,
283
+ sampling=True,
284
+ max_inp_length=2048,
285
+ system_prompt='',
286
+ stream=False,
287
+ **kwargs
288
+ ):
289
+ if processor is None:
290
+ processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
291
+ if isinstance(msgs, str):
292
+ msgs = json.loads(msgs)
293
+ copy_msgs = deepcopy(msgs)
294
+
295
+ assert len(msgs) > 0, "msgs is empty"
296
+ assert sampling or not stream, "if use stream mode, make sure sampling=True"
297
+
298
+ if image is not None and isinstance(copy_msgs[0]["content"], str):
299
+ # copy_msgs[0]['content'] = '(<image>./</image>)\n' + copy_msgs[0]['content']
300
+ copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
301
+
302
+ images = []
303
+ for i, msg in enumerate(copy_msgs):
304
+ role = msg["role"]
305
+ content = msg["content"]
306
+ assert role in ["user", "assistant"]
307
+ if i == 0:
308
+ assert role == "user", "The role of first msg should be user"
309
+ if isinstance(content, str):
310
+ content = [content]
311
+ cur_msgs = []
312
+ for c in content:
313
+ if isinstance(c, Image.Image):
314
+ images.append(c)
315
+ cur_msgs.append("(<image>./</image>)")
316
+ elif isinstance(c, str):
317
+ cur_msgs.append(c)
318
+ msg["content"] = "\n".join(cur_msgs)
319
+
320
+ if system_prompt:
321
+ sys_msg = {'role': 'system', 'content': system_prompt}
322
+ copy_msgs = [sys_msg] + copy_msgs
323
+
324
+ prompt = processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True)
325
+ inputs = processor(prompt, images, return_tensors="pt", max_length=max_inp_length).to(self.device)
326
+
327
+ if sampling:
328
+ generation_config = {
329
+ "top_p": 0.8,
330
+ "top_k": 100,
331
+ "temperature": 0.7,
332
+ "do_sample": True,
333
+ "repetition_penalty": 1.05
334
+ }
335
+ else:
336
+ generation_config = {
337
+ "num_beams": 3,
338
+ "repetition_penalty": 1.2,
339
+ }
340
+
341
+ generation_config.update(
342
+ (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
343
+ )
344
+ with torch.inference_mode():
345
+ res = self.generate(
346
+ inputs,
347
+ tokenizer=tokenizer,
348
+ max_new_tokens=max_new_tokens,
349
+ vision_hidden_states=vision_hidden_states,
350
+ stream=stream,
351
+ decode_text=True,
352
+ **generation_config
353
+ )
354
+
355
+ if stream:
356
+ def stream_gen():
357
+ for text in res:
358
+ text = text.replace(tokenizer.eot_token, '').replace(tokenizer.eos_token, '')
359
+ yield text
360
+ return stream_gen()
361
+
362
+ else:
363
+ answer = res[0]
364
+ return answer
outputs_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d0f1aa37b3e3c66ef7007fcca669b7c686931633bf34c7af180198da50b1406
3
+ size 16833435
preprocessor_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_processor_type": "MiniCPMVImageProcessor",
3
+ "auto_map": {
4
+ "AutoProcessor": "processing_minicpmv.MiniCPMVProcessor",
5
+ "AutoImageProcessor": "image_processing_minicpmv.MiniCPMVImageProcessor"
6
+ },
7
+ "processor_class": "MiniCPMVProcessor",
8
+ "max_slice_nums": 9,
9
+ "scale_resolution": 448,
10
+ "patch_size": 14,
11
+ "image_feature_size": 96,
12
+ "im_start": "<image>",
13
+ "im_end": "</image>",
14
+ "slice_start": "<slice>",
15
+ "slice_end": "</slice>",
16
+ "unk": "<unk>",
17
+ "norm_mean": [0.5, 0.5, 0.5],
18
+ "norm_std": [0.5, 0.5, 0.5],
19
+ "version": 2.5
20
+ }
processing_minicpmv.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for MiniCPMV.
17
+ """
18
+
19
+ from typing import List, Optional, Union, Dict, Any
20
+ import torch
21
+ import re
22
+
23
+ from transformers.image_processing_utils import BatchFeature
24
+ from transformers.image_utils import ImageInput
25
+ from transformers.processing_utils import ProcessorMixin
26
+ from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
27
+ from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
28
+
29
+ from .image_processing_minicpmv import MiniCPMVBatchFeature
30
+
31
+
32
+ class MiniCPMVProcessor(ProcessorMixin):
33
+ r"""
34
+ Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
35
+
36
+ [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
37
+ [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
38
+
39
+ Args:
40
+ image_processor ([`MiniCPMVImageProcessor`], *optional*):
41
+ The image processor is a required input.
42
+ tokenizer ([`LlamaTokenizerWrapper`], *optional*):
43
+ The tokenizer is a required input.
44
+ """
45
+ attributes = ["image_processor", "tokenizer"]
46
+ image_processor_class = "AutoImageProcessor"
47
+ tokenizer_class = "AutoTokenizer"
48
+
49
+ def __init__(self, image_processor=None, tokenizer=None):
50
+ super().__init__(image_processor, tokenizer)
51
+ self.version = image_processor.version
52
+
53
+ def __call__(
54
+ self,
55
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
56
+ images: ImageInput = None,
57
+ padding: Union[bool, str, PaddingStrategy] = False,
58
+ truncation: Union[bool, str, TruncationStrategy] = None,
59
+ max_length: Optional[int] = None,
60
+ do_pad: Optional[bool] = True,
61
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
62
+ ) -> MiniCPMVBatchFeature:
63
+ """
64
+ Only support for single input for now. Batched input is coming soon.
65
+
66
+ Args:
67
+ text (`str`):
68
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
69
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
70
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
71
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
72
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
73
+ tensor. Both channels-first and channels-last formats are supported.
74
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
75
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
76
+ index) among:
77
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
78
+ sequence if provided).
79
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
80
+ acceptable input length for the model if that argument is not provided.
81
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
82
+ lengths).
83
+ max_length (`int`, *optional*):
84
+ Maximum length of the returned list and optionally padding length (see above).
85
+ do_pad (`bool`, *optional*, defaults to self.do_pad):
86
+ Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
87
+ and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
88
+ truncation (`bool`, *optional*):
89
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
90
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
91
+ If set, will return tensors of a particular framework. Acceptable values are:
92
+
93
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
94
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
95
+ - `'np'`: Return NumPy `np.ndarray` objects.
96
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
97
+
98
+ Returns:
99
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
100
+
101
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
102
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
103
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
104
+ `None`).
105
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
106
+ """
107
+ if images is not None:
108
+ image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors)
109
+ return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length)
110
+
111
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
112
+ def batch_decode(self, *args, **kwargs):
113
+ """
114
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
115
+ refer to the docstring of this method for more information.
116
+ """
117
+ output_ids = args[0]
118
+ result_text = []
119
+ for result in output_ids:
120
+ result = result[result != 0]
121
+ if result[0] == self.tokenizer.bos_id:
122
+ result = result[1:]
123
+ if result[-1] == self.tokenizer.eos_id:
124
+ result = result[:-1]
125
+ result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
126
+ return result_text
127
+ # return self.tokenizer.batch_decode(*args, **kwargs)
128
+
129
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
130
+ def decode(self, *args, **kwargs):
131
+ """
132
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
133
+ the docstring of this method for more information.
134
+ """
135
+ result = args[0]
136
+ result = result[result != 0]
137
+ if result[0] == self.tokenizer.bos_id:
138
+ result = result[1:]
139
+ if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
140
+ result = result[:-1]
141
+ return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
142
+
143
+ def _convert(
144
+ self, input_str, max_inp_length: Optional[int] = None
145
+ ):
146
+ if self.version == 2.5 or self.tokenizer.add_bos_token:
147
+ input_ids = self.tokenizer.encode(input_str)
148
+ else:
149
+ input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
150
+ if max_inp_length is not None:
151
+ input_ids = input_ids[:max_inp_length]
152
+ input_ids = torch.tensor(input_ids, dtype=torch.int32)
153
+
154
+ image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0]
155
+ image_start_tokens += 1
156
+ image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0]
157
+ valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
158
+ image_bounds = torch.hstack(
159
+ [
160
+ image_start_tokens[:valid_image_nums].unsqueeze(-1),
161
+ image_end_tokens[:valid_image_nums].unsqueeze(-1),
162
+ ]
163
+ )
164
+ return input_ids.unsqueeze(0), image_bounds
165
+
166
+ def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None):
167
+ if not len(images):
168
+ model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length)
169
+ return MiniCPMVBatchFeature(data={**model_inputs})
170
+
171
+ pattern = "(<image>./</image>)"
172
+ images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
173
+
174
+ image_tags = re.findall(pattern, texts)
175
+ assert len(image_tags) == len(image_sizes[0])
176
+ text_chunks = texts.split(pattern)
177
+ final_texts = ""
178
+ for i in range(len(image_tags)):
179
+ final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[0][i])
180
+ final_texts += text_chunks[-1]
181
+ input_ids, image_bounds = self._convert(final_texts, max_length)
182
+ return MiniCPMVBatchFeature(data={
183
+ "input_ids": input_ids,
184
+ "pixel_values": images,
185
+ "image_sizes": image_sizes,
186
+ "image_bound": [image_bounds],
187
+ "tgt_sizes": tgt_sizes
188
+ })
189
+
190
+ @property
191
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
192
+ def model_input_names(self):
193
+ tokenizer_input_names = self.tokenizer.model_input_names
194
+ image_processor_input_names = self.image_processor.model_input_names
195
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
196
+
197
+
198
+ def pad(self, orig_items, key, max_length=None, padding_value=0, padding_side="left"):
199
+ items = []
200
+ if isinstance(orig_items[0][key], list):
201
+ assert isinstance(orig_items[0][key][0], torch.Tensor)
202
+ for it in orig_items:
203
+ for tr in it[key]:
204
+ items.append({key: tr})
205
+ else:
206
+ assert isinstance(orig_items[0][key], torch.Tensor)
207
+ items = orig_items
208
+
209
+ batch_size = len(items)
210
+ shape = items[0][key].shape
211
+ dim = len(shape)
212
+ assert dim <= 3
213
+ if max_length is None:
214
+ max_length = 0
215
+ max_length = max(max_length, max(item[key].shape[-1] for item in items))
216
+ min_length = min(item[key].shape[-1] for item in items)
217
+ dtype = items[0][key].dtype
218
+
219
+ if dim == 1:
220
+ return torch.cat([item[key] for item in items], dim=0)
221
+ elif dim == 2:
222
+ if max_length == min_length:
223
+ return torch.cat([item[key] for item in items], dim=0)
224
+ tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
225
+ else:
226
+ tensor = (
227
+ torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
228
+ + padding_value
229
+ )
230
+
231
+ for i, item in enumerate(items):
232
+ if dim == 2:
233
+ if padding_side == "left":
234
+ tensor[i, -len(item[key][0]) :] = item[key][0].clone()
235
+ else:
236
+ tensor[i, : len(item[key][0])] = item[key][0].clone()
237
+ elif dim == 3:
238
+ if padding_side == "left":
239
+ tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
240
+ else:
241
+ tensor[i, : len(item[key][0]), :] = item[key][0].clone()
242
+
243
+ return tensor
244
+
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff
 
resampler.py ADDED
@@ -0,0 +1,812 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ import numpy as np
3
+ import warnings
4
+ from typing import Optional, Tuple
5
+ import torch
6
+ from torch import nn
7
+ from torch import Tensor
8
+ import torch.nn.functional as F
9
+ from torch.nn.functional import *
10
+ from torch.nn.modules.activation import *
11
+ from torch.nn.init import trunc_normal_
12
+ from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
13
+ from transformers import PreTrainedModel
14
+ from transformers.integrations import is_deepspeed_zero3_enabled
15
+
16
+ def get_2d_sincos_pos_embed(embed_dim, image_size):
17
+ """
18
+ image_size: image_size or (image_height, image_width)
19
+ return:
20
+ pos_embed: [image_height, image_width, embed_dim]
21
+ """
22
+ if isinstance(image_size, int):
23
+ grid_h_size, grid_w_size = image_size, image_size
24
+ else:
25
+ grid_h_size, grid_w_size = image_size[0], image_size[1]
26
+
27
+ grid_h = np.arange(grid_h_size, dtype=np.float32)
28
+ grid_w = np.arange(grid_w_size, dtype=np.float32)
29
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
30
+ grid = np.stack(grid, axis=0)
31
+
32
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
33
+ return pos_embed
34
+
35
+
36
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
37
+ assert embed_dim % 2 == 0
38
+
39
+ # use half of dimensions to encode grid_h
40
+ emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
41
+ emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
42
+
43
+ emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
44
+ return emb
45
+
46
+
47
+ def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
48
+ """
49
+ embed_dim: output dimension for each position
50
+ pos: a list of positions to be encoded: size (H, W)
51
+ out: (H, W, D)
52
+ """
53
+ assert embed_dim % 2 == 0
54
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
55
+ omega /= embed_dim / 2.
56
+ omega = 1. / 10000 ** omega # (D/2,)
57
+
58
+ out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
59
+
60
+ emb_sin = np.sin(out) # (H, W, D/2)
61
+ emb_cos = np.cos(out) # (H, W, D/2)
62
+
63
+ emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
64
+ return emb
65
+
66
+
67
+ class Resampler(nn.Module):
68
+ """
69
+ A 2D perceiver-resampler network with one cross attention layers by
70
+ given learnable queries and 2d sincos pos_emb
71
+ Outputs:
72
+ A tensor with the shape of (batch_size, num_queries, embed_dim)
73
+ """
74
+
75
+ def __init__(
76
+ self,
77
+ num_queries,
78
+ embed_dim,
79
+ num_heads,
80
+ kv_dim=None,
81
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
82
+ adaptive=False,
83
+ max_size=(70, 70),
84
+ ):
85
+ super().__init__()
86
+ self.num_queries = num_queries
87
+ self.embed_dim = embed_dim
88
+ self.num_heads = num_heads
89
+ self.adaptive = adaptive
90
+ self.max_size = max_size
91
+
92
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
93
+
94
+ if kv_dim is not None and kv_dim != embed_dim:
95
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
96
+ else:
97
+ self.kv_proj = nn.Identity()
98
+
99
+ self.attn = MultiheadAttention(embed_dim, num_heads)
100
+ self.ln_q = norm_layer(embed_dim)
101
+ self.ln_kv = norm_layer(embed_dim)
102
+
103
+ self.ln_post = norm_layer(embed_dim)
104
+ self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
105
+
106
+ self._set_2d_pos_cache(self.max_size)
107
+
108
+ def _set_2d_pos_cache(self, max_size, device='cpu'):
109
+ if is_deepspeed_zero3_enabled():
110
+ device='cuda'
111
+ pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
112
+ self.register_buffer("pos_embed", pos_embed, persistent=False)
113
+
114
+ def _adjust_pos_cache(self, tgt_sizes, device):
115
+ max_h = torch.max(tgt_sizes[:, 0])
116
+ max_w = torch.max(tgt_sizes[:, 1])
117
+ if max_h > self.max_size[0] or max_w > self.max_size[1]:
118
+ self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
119
+ self._set_2d_pos_cache(self.max_size, device)
120
+
121
+ def _init_weights(self, m):
122
+ if isinstance(m, nn.Linear):
123
+ trunc_normal_(m.weight, std=.02)
124
+ if isinstance(m, nn.Linear) and m.bias is not None:
125
+ nn.init.constant_(m.bias, 0)
126
+ elif isinstance(m, nn.LayerNorm):
127
+ nn.init.constant_(m.bias, 0)
128
+ nn.init.constant_(m.weight, 1.0)
129
+
130
+ def forward(self, x, tgt_sizes=None):
131
+ assert x.shape[0] == tgt_sizes.shape[0]
132
+ bs = x.shape[0]
133
+
134
+ device = x.device
135
+ dtype = x.dtype
136
+
137
+ patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
138
+
139
+ self._adjust_pos_cache(tgt_sizes, device=device)
140
+
141
+ max_patch_len = torch.max(patch_len)
142
+ key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
143
+
144
+ pos_embed = []
145
+ for i in range(bs):
146
+ tgt_h, tgt_w = tgt_sizes[i]
147
+ pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
148
+ key_padding_mask[i, patch_len[i]:] = True
149
+
150
+ pos_embed = torch.nn.utils.rnn.pad_sequence(
151
+ pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
152
+
153
+ x = self.kv_proj(x) # B * L * D
154
+ x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
155
+
156
+ q = self.ln_q(self.query) # Q * D
157
+
158
+ out = self.attn(
159
+ self._repeat(q, bs), # Q * B * D
160
+ x + pos_embed, # L * B * D + L * B * D
161
+ x,
162
+ key_padding_mask=key_padding_mask)[0]
163
+ # out: Q * B * D
164
+ x = out.permute(1, 0, 2) # B * Q * D
165
+
166
+ x = self.ln_post(x)
167
+ x = x @ self.proj
168
+ return x
169
+
170
+ def _repeat(self, query, N: int):
171
+ return query.unsqueeze(1).repeat(1, N, 1)
172
+
173
+
174
+ class MultiheadAttention(nn.MultiheadAttention):
175
+ def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
176
+ add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
177
+ super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)
178
+
179
+ # rewrite out_proj layer,with nn.Linear
180
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
181
+
182
+ def forward(
183
+ self,
184
+ query: Tensor,
185
+ key: Tensor,
186
+ value: Tensor,
187
+ key_padding_mask: Optional[Tensor] = None,
188
+ need_weights: bool = True,
189
+ attn_mask: Optional[Tensor] = None,
190
+ average_attn_weights: bool = True,
191
+ is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
192
+ why_not_fast_path = ''
193
+ if ((attn_mask is not None and torch.is_floating_point(attn_mask))
194
+ or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
195
+ why_not_fast_path = "floating-point masks are not supported for fast path."
196
+
197
+ is_batched = query.dim() == 3
198
+
199
+ key_padding_mask = F._canonical_mask(
200
+ mask=key_padding_mask,
201
+ mask_name="key_padding_mask",
202
+ other_type=F._none_or_dtype(attn_mask),
203
+ other_name="attn_mask",
204
+ target_type=query.dtype
205
+ )
206
+
207
+ attn_mask = F._canonical_mask(
208
+ mask=attn_mask,
209
+ mask_name="attn_mask",
210
+ other_type=None,
211
+ other_name="",
212
+ target_type=query.dtype,
213
+ check_other=False,
214
+ )
215
+
216
+
217
+ if not is_batched:
218
+ why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
219
+ elif query is not key or key is not value:
220
+ # When lifting this restriction, don't forget to either
221
+ # enforce that the dtypes all match or test cases where
222
+ # they don't!
223
+ why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
224
+ elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
225
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
226
+ elif self.in_proj_weight is None:
227
+ why_not_fast_path = "in_proj_weight was None"
228
+ elif query.dtype != self.in_proj_weight.dtype:
229
+ # this case will fail anyway, but at least they'll get a useful error message.
230
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
231
+ elif self.training:
232
+ why_not_fast_path = "training is enabled"
233
+ elif (self.num_heads % 2) != 0:
234
+ why_not_fast_path = "self.num_heads is not even"
235
+ elif not self.batch_first:
236
+ why_not_fast_path = "batch_first was not True"
237
+ elif self.bias_k is not None:
238
+ why_not_fast_path = "self.bias_k was not None"
239
+ elif self.bias_v is not None:
240
+ why_not_fast_path = "self.bias_v was not None"
241
+ elif self.add_zero_attn:
242
+ why_not_fast_path = "add_zero_attn was enabled"
243
+ elif not self._qkv_same_embed_dim:
244
+ why_not_fast_path = "_qkv_same_embed_dim was not True"
245
+ elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
246
+ why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
247
+ is not supported with NestedTensor input"
248
+ elif torch.is_autocast_enabled():
249
+ why_not_fast_path = "autocast is enabled"
250
+
251
+ if not why_not_fast_path:
252
+ tensor_args = (
253
+ query,
254
+ key,
255
+ value,
256
+ self.in_proj_weight,
257
+ self.in_proj_bias,
258
+ self.out_proj.weight,
259
+ self.out_proj.bias,
260
+ )
261
+ # We have to use list comprehensions below because TorchScript does not support
262
+ # generator expressions.
263
+ if torch.overrides.has_torch_function(tensor_args):
264
+ why_not_fast_path = "some Tensor argument has_torch_function"
265
+ elif _is_make_fx_tracing():
266
+ why_not_fast_path = "we are running make_fx tracing"
267
+ elif not all(_check_arg_device(x) for x in tensor_args):
268
+ why_not_fast_path = ("some Tensor argument's device is neither one of "
269
+ f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
270
+ elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
271
+ why_not_fast_path = ("grad is enabled and at least one of query or the "
272
+ "input/output projection weights or biases requires_grad")
273
+ if not why_not_fast_path:
274
+ merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
275
+
276
+ if self.in_proj_bias is not None and self.in_proj_weight is not None:
277
+ return torch._native_multi_head_attention(
278
+ query,
279
+ key,
280
+ value,
281
+ self.embed_dim,
282
+ self.num_heads,
283
+ self.in_proj_weight,
284
+ self.in_proj_bias,
285
+ self.out_proj.weight,
286
+ self.out_proj.bias,
287
+ merged_mask,
288
+ need_weights,
289
+ average_attn_weights,
290
+ mask_type)
291
+
292
+ any_nested = query.is_nested or key.is_nested or value.is_nested
293
+ assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
294
+ f"The fast path was not hit because {why_not_fast_path}")
295
+
296
+ if self.batch_first and is_batched:
297
+ # make sure that the transpose op does not affect the "is" property
298
+ if key is value:
299
+ if query is key:
300
+ query = key = value = query.transpose(1, 0)
301
+ else:
302
+ query, key = (x.transpose(1, 0) for x in (query, key))
303
+ value = key
304
+ else:
305
+ query, key, value = (x.transpose(1, 0) for x in (query, key, value))
306
+
307
+ if not self._qkv_same_embed_dim:
308
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
309
+ query, key, value, self.embed_dim, self.num_heads,
310
+ self.in_proj_weight, self.in_proj_bias,
311
+ self.bias_k, self.bias_v, self.add_zero_attn,
312
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
313
+ training=self.training,
314
+ key_padding_mask=key_padding_mask, need_weights=need_weights,
315
+ attn_mask=attn_mask,
316
+ use_separate_proj_weight=True,
317
+ q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
318
+ v_proj_weight=self.v_proj_weight,
319
+ average_attn_weights=average_attn_weights,
320
+ is_causal=is_causal)
321
+ else:
322
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
323
+ query, key, value, self.embed_dim, self.num_heads,
324
+ self.in_proj_weight, self.in_proj_bias,
325
+ self.bias_k, self.bias_v, self.add_zero_attn,
326
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
327
+ training=self.training,
328
+ key_padding_mask=key_padding_mask,
329
+ need_weights=need_weights,
330
+ attn_mask=attn_mask,
331
+ average_attn_weights=average_attn_weights,
332
+ is_causal=is_causal)
333
+ if self.batch_first and is_batched:
334
+ return attn_output.transpose(1, 0), attn_output_weights
335
+ else:
336
+ return attn_output, attn_output_weights
337
+
338
+ def multi_head_attention_forward(
339
+ self,
340
+ query: Tensor,
341
+ key: Tensor,
342
+ value: Tensor,
343
+ embed_dim_to_check: int,
344
+ num_heads: int,
345
+ in_proj_weight: Optional[Tensor],
346
+ in_proj_bias: Optional[Tensor],
347
+ bias_k: Optional[Tensor],
348
+ bias_v: Optional[Tensor],
349
+ add_zero_attn: bool,
350
+ dropout_p: float,
351
+ out_proj_weight: Tensor,
352
+ out_proj_bias: Optional[Tensor],
353
+ training: bool = True,
354
+ key_padding_mask: Optional[Tensor] = None,
355
+ need_weights: bool = True,
356
+ attn_mask: Optional[Tensor] = None,
357
+ use_separate_proj_weight: bool = False,
358
+ q_proj_weight: Optional[Tensor] = None,
359
+ k_proj_weight: Optional[Tensor] = None,
360
+ v_proj_weight: Optional[Tensor] = None,
361
+ static_k: Optional[Tensor] = None,
362
+ static_v: Optional[Tensor] = None,
363
+ average_attn_weights: bool = True,
364
+ is_causal: bool = False,
365
+ ) -> Tuple[Tensor, Optional[Tensor]]:
366
+ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
367
+ if has_torch_function(tens_ops):
368
+ return handle_torch_function(
369
+ multi_head_attention_forward,
370
+ tens_ops,
371
+ query,
372
+ key,
373
+ value,
374
+ embed_dim_to_check,
375
+ num_heads,
376
+ in_proj_weight,
377
+ in_proj_bias,
378
+ bias_k,
379
+ bias_v,
380
+ add_zero_attn,
381
+ dropout_p,
382
+ out_proj_weight,
383
+ out_proj_bias,
384
+ training=training,
385
+ key_padding_mask=key_padding_mask,
386
+ need_weights=need_weights,
387
+ attn_mask=attn_mask,
388
+ is_causal=is_causal,
389
+ use_separate_proj_weight=use_separate_proj_weight,
390
+ q_proj_weight=q_proj_weight,
391
+ k_proj_weight=k_proj_weight,
392
+ v_proj_weight=v_proj_weight,
393
+ static_k=static_k,
394
+ static_v=static_v,
395
+ average_attn_weights=average_attn_weights,
396
+ )
397
+
398
+ is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
399
+
400
+ # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
401
+ # is batched, run the computation and before returning squeeze the
402
+ # batch dimension so that the output doesn't carry this temporary batch dimension.
403
+ if not is_batched:
404
+ # unsqueeze if the input is unbatched
405
+ query = query.unsqueeze(1)
406
+ key = key.unsqueeze(1)
407
+ value = value.unsqueeze(1)
408
+ if key_padding_mask is not None:
409
+ key_padding_mask = key_padding_mask.unsqueeze(0)
410
+
411
+ # set up shape vars
412
+ tgt_len, bsz, embed_dim = query.shape
413
+ src_len, _, _ = key.shape
414
+
415
+ key_padding_mask = _canonical_mask(
416
+ mask=key_padding_mask,
417
+ mask_name="key_padding_mask",
418
+ other_type=_none_or_dtype(attn_mask),
419
+ other_name="attn_mask",
420
+ target_type=query.dtype
421
+ )
422
+
423
+ if is_causal and attn_mask is None:
424
+ raise RuntimeError(
425
+ "Need attn_mask if specifying the is_causal hint. "
426
+ "You may use the Transformer module method "
427
+ "`generate_square_subsequent_mask` to create this mask."
428
+ )
429
+
430
+ if is_causal and key_padding_mask is None and not need_weights:
431
+ # when we have a kpm or need weights, we need attn_mask
432
+ # Otherwise, we use the is_causal hint go as is_causal
433
+ # indicator to SDPA.
434
+ attn_mask = None
435
+ else:
436
+ attn_mask = _canonical_mask(
437
+ mask=attn_mask,
438
+ mask_name="attn_mask",
439
+ other_type=None,
440
+ other_name="",
441
+ target_type=query.dtype,
442
+ check_other=False,
443
+ )
444
+
445
+ if key_padding_mask is not None:
446
+ # We have the attn_mask, and use that to merge kpm into it.
447
+ # Turn off use of is_causal hint, as the merged mask is no
448
+ # longer causal.
449
+ is_causal = False
450
+
451
+ assert embed_dim == embed_dim_to_check, \
452
+ f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
453
+ if isinstance(embed_dim, torch.Tensor):
454
+ # embed_dim can be a tensor when JIT tracing
455
+ head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
456
+ else:
457
+ head_dim = embed_dim // num_heads
458
+ assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
459
+ if use_separate_proj_weight:
460
+ # allow MHA to have different embedding dimensions when separate projection weights are used
461
+ assert key.shape[:2] == value.shape[:2], \
462
+ f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
463
+ else:
464
+ assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
465
+
466
+ #
467
+ # compute in-projection
468
+ #
469
+ if not use_separate_proj_weight:
470
+ assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
471
+ q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
472
+ else:
473
+ assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
474
+ assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
475
+ assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
476
+ if in_proj_bias is None:
477
+ b_q = b_k = b_v = None
478
+ else:
479
+ b_q, b_k, b_v = in_proj_bias.chunk(3)
480
+ q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
481
+
482
+ # prep attention mask
483
+
484
+ if attn_mask is not None:
485
+ # ensure attn_mask's dim is 3
486
+ if attn_mask.dim() == 2:
487
+ correct_2d_size = (tgt_len, src_len)
488
+ if attn_mask.shape != correct_2d_size:
489
+ raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
490
+ attn_mask = attn_mask.unsqueeze(0)
491
+ elif attn_mask.dim() == 3:
492
+ correct_3d_size = (bsz * num_heads, tgt_len, src_len)
493
+ if attn_mask.shape != correct_3d_size:
494
+ raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
495
+ else:
496
+ raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
497
+
498
+ # add bias along batch dimension (currently second)
499
+ if bias_k is not None and bias_v is not None:
500
+ assert static_k is None, "bias cannot be added to static key."
501
+ assert static_v is None, "bias cannot be added to static value."
502
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
503
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
504
+ if attn_mask is not None:
505
+ attn_mask = pad(attn_mask, (0, 1))
506
+ if key_padding_mask is not None:
507
+ key_padding_mask = pad(key_padding_mask, (0, 1))
508
+ else:
509
+ assert bias_k is None
510
+ assert bias_v is None
511
+
512
+ #
513
+ # reshape q, k, v for multihead attention and make em batch first
514
+ #
515
+ q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
516
+ if static_k is None:
517
+ k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
518
+ else:
519
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
520
+ assert static_k.size(0) == bsz * num_heads, \
521
+ f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
522
+ assert static_k.size(2) == head_dim, \
523
+ f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
524
+ k = static_k
525
+ if static_v is None:
526
+ v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
527
+ else:
528
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
529
+ assert static_v.size(0) == bsz * num_heads, \
530
+ f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
531
+ assert static_v.size(2) == head_dim, \
532
+ f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
533
+ v = static_v
534
+
535
+ # add zero attention along batch dimension (now first)
536
+ if add_zero_attn:
537
+ zero_attn_shape = (bsz * num_heads, 1, head_dim)
538
+ k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
539
+ v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
540
+ if attn_mask is not None:
541
+ attn_mask = pad(attn_mask, (0, 1))
542
+ if key_padding_mask is not None:
543
+ key_padding_mask = pad(key_padding_mask, (0, 1))
544
+
545
+ # update source sequence length after adjustments
546
+ src_len = k.size(1)
547
+
548
+ # merge key padding and attention masks
549
+ if key_padding_mask is not None:
550
+ assert key_padding_mask.shape == (bsz, src_len), \
551
+ f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
552
+ key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
553
+ expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
554
+ if attn_mask is None:
555
+ attn_mask = key_padding_mask
556
+ else:
557
+ attn_mask = attn_mask + key_padding_mask
558
+
559
+ # adjust dropout probability
560
+ if not training:
561
+ dropout_p = 0.0
562
+
563
+ #
564
+ # (deep breath) calculate attention and out projection
565
+ #
566
+
567
+ if need_weights:
568
+ B, Nt, E = q.shape
569
+ q_scaled = q / math.sqrt(E)
570
+
571
+ assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
572
+
573
+ if attn_mask is not None:
574
+ attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
575
+ else:
576
+ attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
577
+ attn_output_weights = softmax(attn_output_weights, dim=-1)
578
+ if dropout_p > 0.0:
579
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p)
580
+
581
+ attn_output = torch.bmm(attn_output_weights, v)
582
+
583
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
584
+ attn_output = self.out_proj(attn_output)
585
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
586
+
587
+ # optionally average attention weights over heads
588
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
589
+ if average_attn_weights:
590
+ attn_output_weights = attn_output_weights.mean(dim=1)
591
+
592
+ if not is_batched:
593
+ # squeeze the output if input was unbatched
594
+ attn_output = attn_output.squeeze(1)
595
+ attn_output_weights = attn_output_weights.squeeze(0)
596
+ return attn_output, attn_output_weights
597
+ else:
598
+ # attn_mask can be either (L,S) or (N*num_heads, L, S)
599
+ # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
600
+ # in order to match the input for SDPA of (N, num_heads, L, S)
601
+ if attn_mask is not None:
602
+ if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
603
+ attn_mask = attn_mask.unsqueeze(0)
604
+ else:
605
+ attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
606
+
607
+ q = q.view(bsz, num_heads, tgt_len, head_dim)
608
+ k = k.view(bsz, num_heads, src_len, head_dim)
609
+ v = v.view(bsz, num_heads, src_len, head_dim)
610
+
611
+ attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
612
+ attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
613
+
614
+ attn_output = self.out_proj(attn_output)
615
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
616
+ if not is_batched:
617
+ # squeeze the output if input was unbatched
618
+ attn_output = attn_output.squeeze(1)
619
+ return attn_output, None
620
+
621
+
622
+ def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
623
+ key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
624
+ # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
625
+ # and returns if the input is batched or not.
626
+ # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
627
+
628
+ # Shape check.
629
+ if query.dim() == 3:
630
+ # Batched Inputs
631
+ is_batched = True
632
+ assert key.dim() == 3 and value.dim() == 3, \
633
+ ("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
634
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
635
+ if key_padding_mask is not None:
636
+ assert key_padding_mask.dim() == 2, \
637
+ ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
638
+ f" but found {key_padding_mask.dim()}-D tensor instead")
639
+ if attn_mask is not None:
640
+ assert attn_mask.dim() in (2, 3), \
641
+ ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
642
+ f" but found {attn_mask.dim()}-D tensor instead")
643
+ elif query.dim() == 2:
644
+ # Unbatched Inputs
645
+ is_batched = False
646
+ assert key.dim() == 2 and value.dim() == 2, \
647
+ ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
648
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
649
+
650
+ if key_padding_mask is not None:
651
+ assert key_padding_mask.dim() == 1, \
652
+ ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
653
+ f" but found {key_padding_mask.dim()}-D tensor instead")
654
+
655
+ if attn_mask is not None:
656
+ assert attn_mask.dim() in (2, 3), \
657
+ ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
658
+ f" but found {attn_mask.dim()}-D tensor instead")
659
+ if attn_mask.dim() == 3:
660
+ expected_shape = (num_heads, query.shape[0], key.shape[0])
661
+ assert attn_mask.shape == expected_shape, \
662
+ (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
663
+ else:
664
+ raise AssertionError(
665
+ f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
666
+
667
+ return is_batched
668
+
669
+
670
+ def _canonical_mask(
671
+ mask: Optional[Tensor],
672
+ mask_name: str,
673
+ other_type: Optional[DType],
674
+ other_name: str,
675
+ target_type: DType,
676
+ check_other: bool = True,
677
+ ) -> Optional[Tensor]:
678
+
679
+ if mask is not None:
680
+ _mask_dtype = mask.dtype
681
+ _mask_is_float = torch.is_floating_point(mask)
682
+ if _mask_dtype != torch.bool and not _mask_is_float:
683
+ raise AssertionError(
684
+ f"only bool and floating types of {mask_name} are supported")
685
+ if check_other and other_type is not None:
686
+ if _mask_dtype != other_type:
687
+ warnings.warn(
688
+ f"Support for mismatched {mask_name} and {other_name} "
689
+ "is deprecated. Use same type for both instead."
690
+ )
691
+ if not _mask_is_float:
692
+ mask = (
693
+ torch.zeros_like(mask, dtype=target_type)
694
+ .masked_fill_(mask, float("-inf"))
695
+ )
696
+ return mask
697
+
698
+
699
+ def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
700
+ if input is None:
701
+ return None
702
+ elif isinstance(input, torch.Tensor):
703
+ return input.dtype
704
+ raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
705
+
706
+ def _in_projection_packed(
707
+ q: Tensor,
708
+ k: Tensor,
709
+ v: Tensor,
710
+ w: Tensor,
711
+ b: Optional[Tensor] = None,
712
+ ) -> List[Tensor]:
713
+ r"""
714
+ Performs the in-projection step of the attention operation, using packed weights.
715
+ Output is a triple containing projection tensors for query, key and value.
716
+ Args:
717
+ q, k, v: query, key and value tensors to be projected. For self-attention,
718
+ these are typically the same tensor; for encoder-decoder attention,
719
+ k and v are typically the same tensor. (We take advantage of these
720
+ identities for performance if they are present.) Regardless, q, k and v
721
+ must share a common embedding dimension; otherwise their shapes may vary.
722
+ w: projection weights for q, k and v, packed into a single tensor. Weights
723
+ are packed along dimension 0, in q, k, v order.
724
+ b: optional projection biases for q, k and v, packed into a single tensor
725
+ in q, k, v order.
726
+ Shape:
727
+ Inputs:
728
+ - q: :math:`(..., E)` where E is the embedding dimension
729
+ - k: :math:`(..., E)` where E is the embedding dimension
730
+ - v: :math:`(..., E)` where E is the embedding dimension
731
+ - w: :math:`(E * 3, E)` where E is the embedding dimension
732
+ - b: :math:`E * 3` where E is the embedding dimension
733
+ Output:
734
+ - in output list :math:`[q', k', v']`, each output tensor will have the
735
+ same shape as the corresponding input tensor.
736
+ """
737
+ E = q.size(-1)
738
+ if k is v:
739
+ if q is k:
740
+ # self-attention
741
+ proj = linear(q, w, b)
742
+ # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
743
+ proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
744
+ return proj[0], proj[1], proj[2]
745
+ else:
746
+ # encoder-decoder attention
747
+ w_q, w_kv = w.split([E, E * 2])
748
+ if b is None:
749
+ b_q = b_kv = None
750
+ else:
751
+ b_q, b_kv = b.split([E, E * 2])
752
+ q_proj = linear(q, w_q, b_q)
753
+ kv_proj = linear(k, w_kv, b_kv)
754
+ # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
755
+ kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
756
+ return (q_proj, kv_proj[0], kv_proj[1])
757
+ else:
758
+ w_q, w_k, w_v = w.chunk(3)
759
+ if b is None:
760
+ b_q = b_k = b_v = None
761
+ else:
762
+ b_q, b_k, b_v = b.chunk(3)
763
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
764
+
765
+
766
+ def _in_projection(
767
+ q: Tensor,
768
+ k: Tensor,
769
+ v: Tensor,
770
+ w_q: Tensor,
771
+ w_k: Tensor,
772
+ w_v: Tensor,
773
+ b_q: Optional[Tensor] = None,
774
+ b_k: Optional[Tensor] = None,
775
+ b_v: Optional[Tensor] = None,
776
+ ) -> Tuple[Tensor, Tensor, Tensor]:
777
+ r"""
778
+ Performs the in-projection step of the attention operation. This is simply
779
+ a triple of linear projections, with shape constraints on the weights which
780
+ ensure embedding dimension uniformity in the projected outputs.
781
+ Output is a triple containing projection tensors for query, key and value.
782
+ Args:
783
+ q, k, v: query, key and value tensors to be projected.
784
+ w_q, w_k, w_v: weights for q, k and v, respectively.
785
+ b_q, b_k, b_v: optional biases for q, k and v, respectively.
786
+ Shape:
787
+ Inputs:
788
+ - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
789
+ number of leading dimensions.
790
+ - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
791
+ number of leading dimensions.
792
+ - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
793
+ number of leading dimensions.
794
+ - w_q: :math:`(Eq, Eq)`
795
+ - w_k: :math:`(Eq, Ek)`
796
+ - w_v: :math:`(Eq, Ev)`
797
+ - b_q: :math:`(Eq)`
798
+ - b_k: :math:`(Eq)`
799
+ - b_v: :math:`(Eq)`
800
+ Output: in output triple :math:`(q', k', v')`,
801
+ - q': :math:`[Qdims..., Eq]`
802
+ - k': :math:`[Kdims..., Eq]`
803
+ - v': :math:`[Vdims..., Eq]`
804
+ """
805
+ Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
806
+ assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
807
+ assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
808
+ assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
809
+ assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
810
+ assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
811
+ assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
812
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "!",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenization_minicpmv_fast.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
4
+
5
+
6
+ class MiniCPMVTokenizerFast(PreTrainedTokenizerFast):
7
+ def __init__(self, **kwargs):
8
+ super().__init__(**kwargs)
9
+ self.eot_token = "<|eot_id|>"
10
+ self.im_start = "<image>"
11
+ self.im_end = "</image>"
12
+ self.ref_start = "<ref>"
13
+ self.ref_end = "</ref>"
14
+ self.box_start = "<box>"
15
+ self.box_end = "</box>"
16
+ self.quad_start = "<quad>"
17
+ self.quad_end = "</quad>"
18
+ self.slice_start = "<slice>"
19
+ self.slice_end = "</slice>"
20
+
21
+ @property
22
+ def eos_id(self):
23
+ return self.eos_token_id
24
+
25
+ @property
26
+ def bos_id(self):
27
+ return self.bos_token_id
28
+
29
+ @property
30
+ def unk_id(self):
31
+ return self.unk_token_id
32
+
33
+ @property
34
+ def eot_id(self):
35
+ return self.convert_tokens_to_ids(self.eot_token)
36
+
37
+ @property
38
+ def im_start_id(self):
39
+ return self.convert_tokens_to_ids(self.im_start)
40
+
41
+ @property
42
+ def im_end_id(self):
43
+ return self.convert_tokens_to_ids(self.im_end)
44
+
45
+ @staticmethod
46
+ def escape(text: str) -> str:
47
+ return text
48
+
49
+ @staticmethod
50
+ def unescape(text: str) -> str:
51
+ return text
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2080 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "!",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128000": {
12
+ "content": "<|begin_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128001": {
20
+ "content": "<|end_of_text|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128002": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128003": {
36
+ "content": "<|reserved_special_token_1|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128004": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128005": {
52
+ "content": "<|reserved_special_token_3|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128006": {
60
+ "content": "<|start_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128007": {
68
+ "content": "<|end_header_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128008": {
76
+ "content": "<|reserved_special_token_4|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128009": {
84
+ "content": "<|eot_id|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128010": {
92
+ "content": "<image>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128011": {
100
+ "content": "</image>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128012": {
108
+ "content": "<ref>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128013": {
116
+ "content": "</ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128014": {
124
+ "content": "<box>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128015": {
132
+ "content": "</box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128016": {
140
+ "content": "<quad>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128017": {
148
+ "content": "</quad>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128018": {
156
+ "content": "<point>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128019": {
164
+ "content": "</point>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128020": {
172
+ "content": "<slice>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128021": {
180
+ "content": "</slice>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128022": {
188
+ "content": "<|reserved_special_token_17|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128023": {
196
+ "content": "<|reserved_special_token_18|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128024": {
204
+ "content": "<|reserved_special_token_19|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128025": {
212
+ "content": "<|reserved_special_token_20|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128026": {
220
+ "content": "<|reserved_special_token_21|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128027": {
228
+ "content": "<|reserved_special_token_22|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128028": {
236
+ "content": "<|reserved_special_token_23|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128029": {
244
+ "content": "<|reserved_special_token_24|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128030": {
252
+ "content": "<|reserved_special_token_25|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128031": {
260
+ "content": "<|reserved_special_token_26|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128032": {
268
+ "content": "<|reserved_special_token_27|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128033": {
276
+ "content": "<|reserved_special_token_28|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128034": {
284
+ "content": "<|reserved_special_token_29|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128035": {
292
+ "content": "<|reserved_special_token_30|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128036": {
300
+ "content": "<|reserved_special_token_31|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128037": {
308
+ "content": "<|reserved_special_token_32|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128038": {
316
+ "content": "<|reserved_special_token_33|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128039": {
324
+ "content": "<|reserved_special_token_34|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128040": {
332
+ "content": "<|reserved_special_token_35|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128041": {
340
+ "content": "<|reserved_special_token_36|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128042": {
348
+ "content": "<|reserved_special_token_37|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128043": {
356
+ "content": "<|reserved_special_token_38|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128044": {
364
+ "content": "<|reserved_special_token_39|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128045": {
372
+ "content": "<|reserved_special_token_40|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128046": {
380
+ "content": "<|reserved_special_token_41|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128047": {
388
+ "content": "<|reserved_special_token_42|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128048": {
396
+ "content": "<|reserved_special_token_43|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128049": {
404
+ "content": "<|reserved_special_token_44|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128050": {
412
+ "content": "<|reserved_special_token_45|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128051": {
420
+ "content": "<|reserved_special_token_46|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128052": {
428
+ "content": "<|reserved_special_token_47|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128053": {
436
+ "content": "<|reserved_special_token_48|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128054": {
444
+ "content": "<|reserved_special_token_49|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128055": {
452
+ "content": "<|reserved_special_token_50|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128056": {
460
+ "content": "<|reserved_special_token_51|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128057": {
468
+ "content": "<|reserved_special_token_52|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128058": {
476
+ "content": "<|reserved_special_token_53|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128059": {
484
+ "content": "<|reserved_special_token_54|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128060": {
492
+ "content": "<|reserved_special_token_55|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128061": {
500
+ "content": "<|reserved_special_token_56|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128062": {
508
+ "content": "<|reserved_special_token_57|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128063": {
516
+ "content": "<|reserved_special_token_58|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128064": {
524
+ "content": "<|reserved_special_token_59|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128065": {
532
+ "content": "<|reserved_special_token_60|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128066": {
540
+ "content": "<|reserved_special_token_61|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128067": {
548
+ "content": "<|reserved_special_token_62|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128068": {
556
+ "content": "<|reserved_special_token_63|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128069": {
564
+ "content": "<|reserved_special_token_64|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128070": {
572
+ "content": "<|reserved_special_token_65|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128071": {
580
+ "content": "<|reserved_special_token_66|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128072": {
588
+ "content": "<|reserved_special_token_67|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128073": {
596
+ "content": "<|reserved_special_token_68|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128074": {
604
+ "content": "<|reserved_special_token_69|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128075": {
612
+ "content": "<|reserved_special_token_70|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128076": {
620
+ "content": "<|reserved_special_token_71|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128077": {
628
+ "content": "<|reserved_special_token_72|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128078": {
636
+ "content": "<|reserved_special_token_73|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128079": {
644
+ "content": "<|reserved_special_token_74|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128080": {
652
+ "content": "<|reserved_special_token_75|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128081": {
660
+ "content": "<|reserved_special_token_76|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128082": {
668
+ "content": "<|reserved_special_token_77|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128083": {
676
+ "content": "<|reserved_special_token_78|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128084": {
684
+ "content": "<|reserved_special_token_79|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128085": {
692
+ "content": "<|reserved_special_token_80|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128086": {
700
+ "content": "<|reserved_special_token_81|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128087": {
708
+ "content": "<|reserved_special_token_82|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128088": {
716
+ "content": "<|reserved_special_token_83|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128089": {
724
+ "content": "<|reserved_special_token_84|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128090": {
732
+ "content": "<|reserved_special_token_85|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128091": {
740
+ "content": "<|reserved_special_token_86|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128092": {
748
+ "content": "<|reserved_special_token_87|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128093": {
756
+ "content": "<|reserved_special_token_88|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128094": {
764
+ "content": "<|reserved_special_token_89|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128095": {
772
+ "content": "<|reserved_special_token_90|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128096": {
780
+ "content": "<|reserved_special_token_91|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128097": {
788
+ "content": "<|reserved_special_token_92|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128098": {
796
+ "content": "<|reserved_special_token_93|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128099": {
804
+ "content": "<|reserved_special_token_94|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128100": {
812
+ "content": "<|reserved_special_token_95|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128101": {
820
+ "content": "<|reserved_special_token_96|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128102": {
828
+ "content": "<|reserved_special_token_97|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128103": {
836
+ "content": "<|reserved_special_token_98|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128104": {
844
+ "content": "<|reserved_special_token_99|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128105": {
852
+ "content": "<|reserved_special_token_100|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128106": {
860
+ "content": "<|reserved_special_token_101|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128107": {
868
+ "content": "<|reserved_special_token_102|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128108": {
876
+ "content": "<|reserved_special_token_103|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128109": {
884
+ "content": "<|reserved_special_token_104|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128110": {
892
+ "content": "<|reserved_special_token_105|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128111": {
900
+ "content": "<|reserved_special_token_106|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128112": {
908
+ "content": "<|reserved_special_token_107|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128113": {
916
+ "content": "<|reserved_special_token_108|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128114": {
924
+ "content": "<|reserved_special_token_109|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128115": {
932
+ "content": "<|reserved_special_token_110|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128116": {
940
+ "content": "<|reserved_special_token_111|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128117": {
948
+ "content": "<|reserved_special_token_112|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128118": {
956
+ "content": "<|reserved_special_token_113|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128119": {
964
+ "content": "<|reserved_special_token_114|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128120": {
972
+ "content": "<|reserved_special_token_115|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128121": {
980
+ "content": "<|reserved_special_token_116|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128122": {
988
+ "content": "<|reserved_special_token_117|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128123": {
996
+ "content": "<|reserved_special_token_118|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128124": {
1004
+ "content": "<|reserved_special_token_119|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128125": {
1012
+ "content": "<|reserved_special_token_120|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128126": {
1020
+ "content": "<|reserved_special_token_121|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128127": {
1028
+ "content": "<|reserved_special_token_122|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128128": {
1036
+ "content": "<|reserved_special_token_123|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128129": {
1044
+ "content": "<|reserved_special_token_124|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128130": {
1052
+ "content": "<|reserved_special_token_125|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128131": {
1060
+ "content": "<|reserved_special_token_126|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128132": {
1068
+ "content": "<|reserved_special_token_127|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128133": {
1076
+ "content": "<|reserved_special_token_128|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128134": {
1084
+ "content": "<|reserved_special_token_129|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128135": {
1092
+ "content": "<|reserved_special_token_130|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128136": {
1100
+ "content": "<|reserved_special_token_131|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128137": {
1108
+ "content": "<|reserved_special_token_132|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128138": {
1116
+ "content": "<|reserved_special_token_133|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128139": {
1124
+ "content": "<|reserved_special_token_134|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128140": {
1132
+ "content": "<|reserved_special_token_135|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128141": {
1140
+ "content": "<|reserved_special_token_136|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128142": {
1148
+ "content": "<|reserved_special_token_137|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128143": {
1156
+ "content": "<|reserved_special_token_138|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128144": {
1164
+ "content": "<|reserved_special_token_139|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128145": {
1172
+ "content": "<|reserved_special_token_140|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128146": {
1180
+ "content": "<|reserved_special_token_141|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128147": {
1188
+ "content": "<|reserved_special_token_142|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128148": {
1196
+ "content": "<|reserved_special_token_143|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128149": {
1204
+ "content": "<|reserved_special_token_144|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128150": {
1212
+ "content": "<|reserved_special_token_145|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128151": {
1220
+ "content": "<|reserved_special_token_146|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128152": {
1228
+ "content": "<|reserved_special_token_147|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128153": {
1236
+ "content": "<|reserved_special_token_148|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128154": {
1244
+ "content": "<|reserved_special_token_149|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128155": {
1252
+ "content": "<|reserved_special_token_150|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128156": {
1260
+ "content": "<|reserved_special_token_151|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128157": {
1268
+ "content": "<|reserved_special_token_152|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128158": {
1276
+ "content": "<|reserved_special_token_153|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128159": {
1284
+ "content": "<|reserved_special_token_154|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128160": {
1292
+ "content": "<|reserved_special_token_155|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128161": {
1300
+ "content": "<|reserved_special_token_156|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128162": {
1308
+ "content": "<|reserved_special_token_157|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128163": {
1316
+ "content": "<|reserved_special_token_158|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128164": {
1324
+ "content": "<|reserved_special_token_159|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128165": {
1332
+ "content": "<|reserved_special_token_160|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128166": {
1340
+ "content": "<|reserved_special_token_161|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128167": {
1348
+ "content": "<|reserved_special_token_162|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128168": {
1356
+ "content": "<|reserved_special_token_163|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128169": {
1364
+ "content": "<|reserved_special_token_164|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128170": {
1372
+ "content": "<|reserved_special_token_165|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128171": {
1380
+ "content": "<|reserved_special_token_166|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128172": {
1388
+ "content": "<|reserved_special_token_167|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128173": {
1396
+ "content": "<|reserved_special_token_168|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128174": {
1404
+ "content": "<|reserved_special_token_169|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128175": {
1412
+ "content": "<|reserved_special_token_170|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128176": {
1420
+ "content": "<|reserved_special_token_171|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128177": {
1428
+ "content": "<|reserved_special_token_172|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128178": {
1436
+ "content": "<|reserved_special_token_173|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128179": {
1444
+ "content": "<|reserved_special_token_174|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128180": {
1452
+ "content": "<|reserved_special_token_175|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128181": {
1460
+ "content": "<|reserved_special_token_176|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128182": {
1468
+ "content": "<|reserved_special_token_177|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128183": {
1476
+ "content": "<|reserved_special_token_178|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128184": {
1484
+ "content": "<|reserved_special_token_179|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128185": {
1492
+ "content": "<|reserved_special_token_180|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128186": {
1500
+ "content": "<|reserved_special_token_181|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128187": {
1508
+ "content": "<|reserved_special_token_182|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128188": {
1516
+ "content": "<|reserved_special_token_183|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128189": {
1524
+ "content": "<|reserved_special_token_184|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128190": {
1532
+ "content": "<|reserved_special_token_185|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128191": {
1540
+ "content": "<|reserved_special_token_186|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128192": {
1548
+ "content": "<|reserved_special_token_187|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128193": {
1556
+ "content": "<|reserved_special_token_188|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128194": {
1564
+ "content": "<|reserved_special_token_189|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128195": {
1572
+ "content": "<|reserved_special_token_190|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128196": {
1580
+ "content": "<|reserved_special_token_191|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128197": {
1588
+ "content": "<|reserved_special_token_192|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128198": {
1596
+ "content": "<|reserved_special_token_193|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128199": {
1604
+ "content": "<|reserved_special_token_194|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128200": {
1612
+ "content": "<|reserved_special_token_195|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128201": {
1620
+ "content": "<|reserved_special_token_196|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128202": {
1628
+ "content": "<|reserved_special_token_197|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128203": {
1636
+ "content": "<|reserved_special_token_198|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128204": {
1644
+ "content": "<|reserved_special_token_199|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128205": {
1652
+ "content": "<|reserved_special_token_200|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128206": {
1660
+ "content": "<|reserved_special_token_201|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128207": {
1668
+ "content": "<|reserved_special_token_202|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128208": {
1676
+ "content": "<|reserved_special_token_203|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128209": {
1684
+ "content": "<|reserved_special_token_204|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128210": {
1692
+ "content": "<|reserved_special_token_205|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128211": {
1700
+ "content": "<|reserved_special_token_206|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128212": {
1708
+ "content": "<|reserved_special_token_207|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128213": {
1716
+ "content": "<|reserved_special_token_208|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128214": {
1724
+ "content": "<|reserved_special_token_209|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128215": {
1732
+ "content": "<|reserved_special_token_210|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128216": {
1740
+ "content": "<|reserved_special_token_211|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128217": {
1748
+ "content": "<|reserved_special_token_212|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128218": {
1756
+ "content": "<|reserved_special_token_213|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128219": {
1764
+ "content": "<|reserved_special_token_214|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128220": {
1772
+ "content": "<|reserved_special_token_215|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128221": {
1780
+ "content": "<|reserved_special_token_216|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128222": {
1788
+ "content": "<|reserved_special_token_217|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128223": {
1796
+ "content": "<|reserved_special_token_218|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128224": {
1804
+ "content": "<|reserved_special_token_219|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128225": {
1812
+ "content": "<|reserved_special_token_220|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128226": {
1820
+ "content": "<|reserved_special_token_221|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128227": {
1828
+ "content": "<|reserved_special_token_222|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128228": {
1836
+ "content": "<|reserved_special_token_223|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128229": {
1844
+ "content": "<|reserved_special_token_224|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128230": {
1852
+ "content": "<|reserved_special_token_225|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128231": {
1860
+ "content": "<|reserved_special_token_226|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128232": {
1868
+ "content": "<|reserved_special_token_227|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128233": {
1876
+ "content": "<|reserved_special_token_228|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128234": {
1884
+ "content": "<|reserved_special_token_229|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128235": {
1892
+ "content": "<|reserved_special_token_230|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128236": {
1900
+ "content": "<|reserved_special_token_231|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128237": {
1908
+ "content": "<|reserved_special_token_232|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128238": {
1916
+ "content": "<|reserved_special_token_233|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128239": {
1924
+ "content": "<|reserved_special_token_234|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128240": {
1932
+ "content": "<|reserved_special_token_235|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128241": {
1940
+ "content": "<|reserved_special_token_236|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128242": {
1948
+ "content": "<|reserved_special_token_237|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128243": {
1956
+ "content": "<|reserved_special_token_238|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128244": {
1964
+ "content": "<|reserved_special_token_239|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128245": {
1972
+ "content": "<|reserved_special_token_240|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128246": {
1980
+ "content": "<|reserved_special_token_241|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128247": {
1988
+ "content": "<|reserved_special_token_242|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128248": {
1996
+ "content": "<|reserved_special_token_243|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128249": {
2004
+ "content": "<|reserved_special_token_244|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128250": {
2012
+ "content": "<|reserved_special_token_245|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128251": {
2020
+ "content": "<|reserved_special_token_246|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128252": {
2028
+ "content": "<|reserved_special_token_247|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128253": {
2036
+ "content": "<|reserved_special_token_248|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128254": {
2044
+ "content": "<|reserved_special_token_249|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128255": {
2052
+ "content": "<|reserved_special_token_250|>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ }
2059
+ },
2060
+ "auto_map": {
2061
+ "AutoTokenizer": [
2062
+ null,
2063
+ "tokenization_minicpmv_fast.MiniCPMVTokenizerFast"
2064
+ ]
2065
+ },
2066
+ "bos_token": "<|begin_of_text|>",
2067
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
2068
+ "clean_up_tokenization_spaces": true,
2069
+ "eos_token": "<|end_of_text|>",
2070
+ "model_input_names": [
2071
+ "input_ids",
2072
+ "attention_mask"
2073
+ ],
2074
+ "model_max_length": 1000000000000000019884624838656,
2075
+ "pad_token": "!",
2076
+ "padding_side": "right",
2077
+ "tokenizer_class": "MiniCPMVTokenizer",
2078
+ "truncation_side": "right",
2079
+ "unk_token": "<unk>"
2080
+ }
value_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2d2261694e9897b24d04d09cc59632e671b9ed0dd4c42ec02e2e25e5b8e2b40
3
+ size 223622