|
--- |
|
license: apache-2.0 |
|
base_model: BSC-LT/roberta-base-bne-capitel-ner |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2002 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: roberta-base-bne-capitel-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2002 |
|
type: conll2002 |
|
config: es |
|
split: validation |
|
args: es |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8712310133756518 |
|
- name: Recall |
|
type: recall |
|
value: 0.8830422794117647 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8770968846285518 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.978961189654646 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base-bne-capitel-ner |
|
|
|
This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1255 |
|
- Precision: 0.8712 |
|
- Recall: 0.8830 |
|
- F1: 0.8771 |
|
- Accuracy: 0.9790 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0135 | 1.0 | 1041 | 0.1233 | 0.8615 | 0.8803 | 0.8708 | 0.9783 | |
|
| 0.0111 | 2.0 | 2082 | 0.1099 | 0.8709 | 0.8853 | 0.8781 | 0.9799 | |
|
| 0.0061 | 3.0 | 3123 | 0.1203 | 0.8569 | 0.8739 | 0.8653 | 0.9781 | |
|
| 0.0035 | 4.0 | 4164 | 0.1255 | 0.8712 | 0.8830 | 0.8771 | 0.9790 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.14.1 |
|
|