metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2002
type: conll2002
config: es
split: validation
args: es
metrics:
- name: Precision
type: precision
value: 0.7348668280871671
- name: Recall
type: recall
value: 0.7311491206938088
- name: F1
type: f1
value: 0.733003260475788
- name: Accuracy
type: accuracy
value: 0.94996285742796
distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2002 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2347
- Precision: 0.7349
- Recall: 0.7311
- F1: 0.7330
- Accuracy: 0.9500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3477 | 1.0 | 521 | 0.2581 | 0.6392 | 0.5888 | 0.6130 | 0.9270 |
0.1883 | 2.0 | 1042 | 0.2224 | 0.6617 | 0.6644 | 0.6631 | 0.9370 |
0.1339 | 3.0 | 1563 | 0.2079 | 0.7044 | 0.7021 | 0.7033 | 0.9431 |
0.1039 | 4.0 | 2084 | 0.2040 | 0.7017 | 0.7221 | 0.7118 | 0.9446 |
0.0835 | 5.0 | 2605 | 0.2126 | 0.7306 | 0.7166 | 0.7235 | 0.9486 |
0.0647 | 6.0 | 3126 | 0.2221 | 0.7220 | 0.7198 | 0.7209 | 0.9478 |
0.0536 | 7.0 | 3647 | 0.2258 | 0.7198 | 0.7244 | 0.7221 | 0.9480 |
0.0443 | 8.0 | 4168 | 0.2319 | 0.7047 | 0.7334 | 0.7188 | 0.9469 |
0.0375 | 9.0 | 4689 | 0.2350 | 0.7182 | 0.7315 | 0.7248 | 0.9482 |
0.0349 | 10.0 | 5210 | 0.2347 | 0.7349 | 0.7311 | 0.7330 | 0.9500 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1