metadata
library_name: transformers
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
- generated_from_trainer
datasets:
- conll2002
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NER-finetuning-BETO-PRO
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2002
type: conll2002
config: es
split: validation
args: es
metrics:
- name: Precision
type: precision
value: 0.8319497419789096
- name: Recall
type: recall
value: 0.8520220588235294
- name: F1
type: f1
value: 0.8418662731297536
- name: Accuracy
type: accuracy
value: 0.9707258864368956
NER-finetuning-BETO-PRO
This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1561
- Precision: 0.8319
- Recall: 0.8520
- F1: 0.8419
- Accuracy: 0.9707
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0462 | 1.0 | 1041 | 0.1448 | 0.8335 | 0.8594 | 0.8462 | 0.9712 |
0.0241 | 2.0 | 2082 | 0.1561 | 0.8319 | 0.8520 | 0.8419 | 0.9707 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1