raulgdp's picture
End of training
1747a00 verified
metadata
library_name: transformers
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NER-finetuning-BETO-PRO
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Precision
            type: precision
            value: 0.8319497419789096
          - name: Recall
            type: recall
            value: 0.8520220588235294
          - name: F1
            type: f1
            value: 0.8418662731297536
          - name: Accuracy
            type: accuracy
            value: 0.9707258864368956

NER-finetuning-BETO-PRO

This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1561
  • Precision: 0.8319
  • Recall: 0.8520
  • F1: 0.8419
  • Accuracy: 0.9707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0462 1.0 1041 0.1448 0.8335 0.8594 0.8462 0.9712
0.0241 2.0 2082 0.1561 0.8319 0.8520 0.8419 0.9707

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1