|
--- |
|
license: mit |
|
base_model: google/vivit-b-16x2-kinetics400 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: vivit-b-16x2-kinetics400-finetuned-cctv-surveillance |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vivit-b-16x2-kinetics400-finetuned-cctv-surveillance |
|
|
|
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1690 |
|
- Accuracy: 0.9559 |
|
- F1: 0.9430 |
|
- Recall: 0.9559 |
|
- Precision: 0.9333 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 4032 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 1.5836 | 0.12 | 504 | 0.3644 | 0.9206 | 0.8850 | 0.9206 | 0.8799 | |
|
| 0.3767 | 1.12 | 1008 | 0.2586 | 0.9265 | 0.8994 | 0.9265 | 0.8831 | |
|
| 0.2063 | 2.12 | 1512 | 0.2190 | 0.9294 | 0.9097 | 0.9294 | 0.9002 | |
|
| 0.4514 | 3.12 | 2016 | 0.2217 | 0.9529 | 0.9419 | 0.9529 | 0.9380 | |
|
| 0.2678 | 4.12 | 2520 | 0.1919 | 0.9529 | 0.9419 | 0.9529 | 0.9380 | |
|
| 0.2311 | 5.12 | 3024 | 0.1797 | 0.9412 | 0.9252 | 0.9412 | 0.9141 | |
|
| 0.5256 | 6.12 | 3528 | 0.1690 | 0.9559 | 0.9430 | 0.9559 | 0.9333 | |
|
| 0.539 | 7.12 | 4032 | 0.1678 | 0.9529 | 0.9398 | 0.9529 | 0.9297 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|