|
--- |
|
library_name: transformers |
|
datasets: |
|
- oscar |
|
- mc4 |
|
- rasyosef/amharic-sentences-corpus |
|
language: |
|
- am |
|
metrics: |
|
- perplexity |
|
pipeline_tag: fill-mask |
|
widget: |
|
- text: ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ <mask> ተቆጥሯል። |
|
example_title: Example 1 |
|
- text: ባለፉት አምስት ዓመታት የአውሮጳ ሀገራት የጦር <mask> ግዢ በእጅጉ ጨምሯል። |
|
example_title: Example 2 |
|
- text: ኬንያውያን ከዳር እስከዳር በአንድ ቆመው የተቃውሞ ድምጻቸውን ማሰማታቸውን ተከትሎ የዜጎችን ቁጣ የቀሰቀሰው የቀረጥ ጭማሪ ሕግ ትናንት በፕሬዝደንት ዊልያም ሩቶ <mask> ቢደረግም ዛሬም ግን የተቃውሞው እንቅስቃሴ መቀጠሉ እየተነገረ ነው። |
|
example_title: Example 3 |
|
- text: ተማሪዎቹ በውድድሩ ካሸነፉበት የፈጠራ ስራ መካከል <mask> እና ቅዝቃዜን እንደአየር ሁኔታው የሚያስተካክል ጃኬት አንዱ ነው። |
|
example_title: Example 4 |
|
--- |
|
|
|
# roberta-medium-amharic |
|
|
|
This model has the same architecture as [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) and was pretrained from scratch using the Amharic subsets of the [oscar](https://huggingface.co/datasets/oscar), [mc4](https://huggingface.co/datasets/mc4), and [amharic-sentences-corpus](https://huggingface.co/datasets/rasyosef/amharic-sentences-corpus) datasets, on a total of **290 Million tokens**. The tokenizer was trained from scratch on the same text corpus, and had a vocabulary size of 32k. |
|
|
|
The model was trained for **15 hours** on an **A100 40GB GPU**. |
|
|
|
It achieves the following results on the evaluation set: |
|
|
|
- `Loss: 2.446` |
|
- `Perplexity: 11.59` |
|
|
|
Even though this model has **42 Million parameters** it beats the 7x larger `279 Million` parameter [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) multilingual model on Amharic Sentiment Classification and Named Entity Recognition tasks. |
|
|
|
# How to use |
|
You can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='rasyosef/roberta-medium-amharic') |
|
>>> unmasker("ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ <mask> ተቆጥሯል።") |
|
|
|
[{'score': 0.7755730152130127, |
|
'token': 137, |
|
'token_str': 'ዓመት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመት ተቆጥሯል።'}, |
|
{'score': 0.09340856224298477, |
|
'token': 346, |
|
'token_str': 'አመት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመት ተቆጥሯል።'}, |
|
{'score': 0.08586721867322922, |
|
'token': 217, |
|
'token_str': 'ዓመታት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመታት ተቆጥሯል።'}, |
|
{'score': 0.011987944133579731, |
|
'token': 733, |
|
'token_str': 'አመታት', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ አመታት ተቆጥሯል።'}, |
|
{'score': 0.010042797774076462, |
|
'token': 1392, |
|
'token_str': 'ዓመቱ', |
|
'sequence': 'ከሀገራቸው ከኢትዮጵያ ከወጡ ግማሽ ምዕተ ዓመቱ ተቆጥሯል።'}] |
|
``` |
|
|
|
# Finetuning |
|
|
|
This model was finetuned and evaluated on the following Amharic NLP tasks |
|
|
|
- **Sentiment Classification** |
|
- Dataset: [amharic-sentiment](https://huggingface.co/datasets/rasyosef/amharic-sentiment) |
|
- Code: https://github.com/rasyosef/amharic-sentiment-classification |
|
- **Named Entity Recognition** |
|
- Dataset: [amharic-named-entity-recognition](https://huggingface.co/datasets/rasyosef/amharic-named-entity-recognition) |
|
- Code: https://github.com/rasyosef/amharic-named-entity-recognition |
|
|
|
### Finetuned Model Performance |
|
The reported F1 scores are macro averages. |
|
|
|
|Model|Size (# params)| Perplexity|Sentiment (F1)| Named Entity Recognition (F1)| |
|
|-----|---------------|-----------|--------------|------------------------------| |
|
|roberta-base-amharic|110M|8.08|0.88|0.78| |
|
|**roberta-medium-amharic**|**42.2M**|**11.59**|**0.84**|**0.75**| |
|
|bert-medium-amharic|40.5M|13.74|0.83|0.68| |
|
|bert-small-amharic|27.8M|15.96|0.83|0.68| |
|
|bert-mini-amharic|10.7M|22.42|0.81|0.64| |
|
|bert-tiny-amharic|4.18M|71.52|0.79|0.54| |
|
|xlm-roberta-base|279M||0.83|0.73| |
|
|afro-xlmr-base|278M||0.83|0.75| |
|
|afro-xlmr-large|560M||0.86|0.76| |
|
|am-roberta|443M||0.82|0.69| |
|
|