Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,89 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/phi-2
|
5 |
+
datasets:
|
6 |
+
- teknium/OpenHermes-2.5
|
7 |
+
- ContextualAI/ultrafeedback_clair_32k
|
8 |
+
pipeline_tag: text-generation
|
9 |
---
|
10 |
|
11 |
+
# phi-2-instruct-apo
|
12 |
+
|
13 |
+
This is a finetuned version of Microsoft's 2.7B parameter [phi-2](https://huggingface.co/microsoft/phi-2) transfromer model that has underwent a post-training process that incorporates both **supervised fine-tuning** and **anchored preference optimization** for instruction following. I used the [trl](https://huggingface.co/docs/trl/en/index) library and a single **A100 40GB** GPU during both the SFT and APO steps.
|
14 |
+
|
15 |
+
- Supervised Fine-Tuning
|
16 |
+
- SFT Model: [phi-2-sft](https://huggingface.co/rasyosef/phi-2-sft-openhermes-128k-v2)
|
17 |
+
- Used 128,000 instruction, response pairs from the [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) dataset
|
18 |
+
|
19 |
+
- Anchored Preference Optimization (APO)
|
20 |
+
- LoRA Adapter: [phi-2-apo](https://huggingface.co/rasyosef/phi-2-apo)
|
21 |
+
- Used 10,000 preference pairs from the [ContextualAI/ultrafeedback_clair_32k](https://huggingface.co/datasets/ContextualAI/ultrafeedback_clair_32k) dataset
|
22 |
+
|
23 |
+
## How to use
|
24 |
+
### Chat Format
|
25 |
+
|
26 |
+
Given the nature of the training data, the phi-2 instruct model is best suited for prompts using the chat format as follows.
|
27 |
+
You can provide the prompt as a question with a generic template as follows:
|
28 |
+
```markdown
|
29 |
+
<|im_start|>system
|
30 |
+
You are a helpful assistant.<|im_end|>
|
31 |
+
<|im_start|>user
|
32 |
+
Question?<|im_end|>
|
33 |
+
<|im_start|>assistant
|
34 |
+
```
|
35 |
+
|
36 |
+
For example:
|
37 |
+
```markdown
|
38 |
+
<|im_start|>system
|
39 |
+
You are a helpful assistant.<|im_end|>
|
40 |
+
<|im_start|>user
|
41 |
+
How to explain Internet for a medieval knight?<|im_end|>
|
42 |
+
<|im_start|>assistant
|
43 |
+
```
|
44 |
+
where the model generates the text after `<|im_start|>assistant` .
|
45 |
+
|
46 |
+
### Sample inference code
|
47 |
+
|
48 |
+
This code snippets show how to get quickly started with running the model on a GPU:
|
49 |
+
|
50 |
+
```python
|
51 |
+
import torch
|
52 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
53 |
+
|
54 |
+
torch.random.manual_seed(0)
|
55 |
+
|
56 |
+
model_id = "rasyosef/phi-2-instruct-apo"
|
57 |
+
model = AutoModelForCausalLM.from_pretrained(
|
58 |
+
model_id,
|
59 |
+
device_map="cuda",
|
60 |
+
torch_dtype="auto"
|
61 |
+
)
|
62 |
+
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
64 |
+
|
65 |
+
messages = [
|
66 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
67 |
+
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
|
68 |
+
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
|
69 |
+
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
|
70 |
+
]
|
71 |
+
|
72 |
+
pipe = pipeline(
|
73 |
+
"text-generation",
|
74 |
+
model=model,
|
75 |
+
tokenizer=tokenizer,
|
76 |
+
)
|
77 |
+
|
78 |
+
generation_args = {
|
79 |
+
"max_new_tokens": 256,
|
80 |
+
"return_full_text": False,
|
81 |
+
"temperature": 0.0,
|
82 |
+
"do_sample": False,
|
83 |
+
}
|
84 |
+
|
85 |
+
output = pipe(messages, **generation_args)
|
86 |
+
print(output[0]['generated_text'])
|
87 |
+
```
|
88 |
+
|
89 |
+
Note: If you want to use flash attention, call _AutoModelForCausalLM.from_pretrained()_ with _attn_implementation="flash_attention_2"_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|