|
--- |
|
library_name: diffusers |
|
license: apache-2.0 |
|
datasets: |
|
- valhalla/emoji-dataset |
|
language: |
|
- en |
|
tags: |
|
- art |
|
--- |
|
## Model Details |
|
|
|
**Abstract**: |
|
|
|
*Trained an Unconditional Diffusion Model on emoji dataset with DDPM noise scheduler * |
|
|
|
## Inference |
|
|
|
**DDPM** models can use *discrete noise schedulers* such as: |
|
|
|
- [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) |
|
- [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) |
|
- [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) |
|
|
|
for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. |
|
For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. |
|
|
|
See the following code: |
|
|
|
```python |
|
# !pip install diffusers |
|
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline |
|
model_id = "google/DDPM-emoji-64" |
|
# load model and scheduler |
|
ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference |
|
# run pipeline in inference (sample random noise and denoise) |
|
image = ddpm().images[0] |
|
# save image |
|
image.save("ddpm_generated_image.png") |
|
``` |
|
|
|
## Samples Generated |
|
|
|
1. ![sample_1](https://huggingface.co/randomani/DDPM-emoji-64/blob/main/1.png) |
|
2. ![sample_2](https://huggingface.co/randomani/DDPM-emoji-64/blob/main/2.png) |
|
3. ![sample_3](https://huggingface.co/randomani/DDPM-emoji-64/blob/main/3.png) |
|
4. ![sample_4](https://huggingface.co/randomani/DDPM-emoji-64/blob/main/4.png) |