|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- nerd |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model_index: |
|
- name: ner_nerd_fine |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: nerd |
|
type: nerd |
|
args: nerd |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9058961278375514 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner_nerd_fine |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the nerd dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5332 |
|
- Precision: 0.6337 |
|
- Recall: 0.6731 |
|
- F1: 0.6528 |
|
- Accuracy: 0.9059 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.6337 | 1.0 | 8235 | 0.3391 | 0.5974 | 0.6567 | 0.6256 | 0.9010 | |
|
| 0.3086 | 2.0 | 16470 | 0.3188 | 0.6276 | 0.6607 | 0.6437 | 0.9061 | |
|
| 0.2394 | 3.0 | 24705 | 0.3304 | 0.6284 | 0.6740 | 0.6504 | 0.9064 | |
|
| 0.1841 | 4.0 | 32940 | 0.3451 | 0.6286 | 0.6749 | 0.6509 | 0.9065 | |
|
| 0.1392 | 5.0 | 41175 | 0.3837 | 0.6251 | 0.6745 | 0.6489 | 0.9056 | |
|
| 0.1056 | 6.0 | 49410 | 0.4185 | 0.6307 | 0.6751 | 0.6521 | 0.9057 | |
|
| 0.0812 | 7.0 | 57645 | 0.4615 | 0.6288 | 0.6774 | 0.6522 | 0.9052 | |
|
| 0.0629 | 8.0 | 65880 | 0.4933 | 0.6332 | 0.6755 | 0.6537 | 0.9065 | |
|
| 0.0492 | 9.0 | 74115 | 0.5266 | 0.6360 | 0.6752 | 0.6550 | 0.9067 | |
|
| 0.0401 | 10.0 | 82350 | 0.5452 | 0.6340 | 0.6760 | 0.6543 | 0.9065 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.9.1 |
|
- Pytorch 1.9.0+cu102 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.2 |
|
|