|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- PolyAI/minds14 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-tiny |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: PolyAI/minds14 |
|
type: PolyAI/minds14 |
|
config: en-US |
|
split: train |
|
args: en-US |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.40436835891381345 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-tiny |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5951 |
|
- Wer Ortho: 0.4781 |
|
- Wer: 0.4044 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 600 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| |
|
| 2.605 | 1.79 | 50 | 2.3450 | 0.5355 | 0.3967 | |
|
| 1.67 | 3.57 | 100 | 1.4800 | 0.5355 | 0.4126 | |
|
| 0.8205 | 5.36 | 150 | 0.8745 | 0.5836 | 0.4787 | |
|
| 0.5984 | 7.14 | 200 | 0.7396 | 0.4923 | 0.4079 | |
|
| 0.4993 | 8.93 | 250 | 0.6831 | 0.4769 | 0.3996 | |
|
| 0.4134 | 10.71 | 300 | 0.6510 | 0.4830 | 0.4032 | |
|
| 0.384 | 12.5 | 350 | 0.6307 | 0.4738 | 0.3961 | |
|
| 0.3286 | 14.29 | 400 | 0.6162 | 0.4806 | 0.4050 | |
|
| 0.3188 | 16.07 | 450 | 0.6062 | 0.4800 | 0.4050 | |
|
| 0.2751 | 17.86 | 500 | 0.6010 | 0.4843 | 0.4097 | |
|
| 0.2568 | 19.64 | 550 | 0.5970 | 0.4750 | 0.4026 | |
|
| 0.237 | 21.43 | 600 | 0.5951 | 0.4781 | 0.4044 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.0.dev0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|