rajevan123's picture
End of training
2573c6d verified
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - accuracy
base_model: FacebookAI/roberta-base
model-index:
  - name: STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-150-with-higher-r-mid
    results: []

STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-150-with-higher-r-mid

This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7443
  • Accuracy: 0.6873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 449 1.0408 0.4625
0.9593 2.0 898 1.0281 0.4981
0.9206 3.0 1347 0.9842 0.5225
0.8912 4.0 1796 0.9107 0.5693
0.8539 5.0 2245 0.8257 0.6273
0.8107 6.0 2694 0.8062 0.6685
0.779 7.0 3143 0.7672 0.6648
0.7797 8.0 3592 0.7709 0.6704
0.7649 9.0 4041 0.7509 0.6873
0.7649 10.0 4490 0.7376 0.6816
0.7527 11.0 4939 0.7360 0.6835
0.7526 12.0 5388 0.7493 0.6816
0.7476 13.0 5837 0.7421 0.6723
0.741 14.0 6286 0.7331 0.6929
0.7284 15.0 6735 0.7404 0.6854
0.7321 16.0 7184 0.7372 0.6798
0.7269 17.0 7633 0.7344 0.6816
0.7237 18.0 8082 0.7428 0.6723
0.7261 19.0 8531 0.7368 0.6854
0.7261 20.0 8980 0.7591 0.6704
0.715 21.0 9429 0.7434 0.6835
0.7088 22.0 9878 0.7504 0.6854
0.7228 23.0 10327 0.7500 0.6835
0.7127 24.0 10776 0.7583 0.6835
0.706 25.0 11225 0.7353 0.6948
0.7104 26.0 11674 0.7423 0.6891
0.7068 27.0 12123 0.7426 0.6910
0.7046 28.0 12572 0.7494 0.6873
0.7036 29.0 13021 0.7460 0.6910
0.7036 30.0 13470 0.7443 0.6873

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2