metadata
license: mit
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: FacebookAI/roberta-base
model-index:
- name: STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-150-with-higher-r-mid
results: []
STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-150-with-higher-r-mid
This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7443
- Accuracy: 0.6873
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 449 | 1.0408 | 0.4625 |
0.9593 | 2.0 | 898 | 1.0281 | 0.4981 |
0.9206 | 3.0 | 1347 | 0.9842 | 0.5225 |
0.8912 | 4.0 | 1796 | 0.9107 | 0.5693 |
0.8539 | 5.0 | 2245 | 0.8257 | 0.6273 |
0.8107 | 6.0 | 2694 | 0.8062 | 0.6685 |
0.779 | 7.0 | 3143 | 0.7672 | 0.6648 |
0.7797 | 8.0 | 3592 | 0.7709 | 0.6704 |
0.7649 | 9.0 | 4041 | 0.7509 | 0.6873 |
0.7649 | 10.0 | 4490 | 0.7376 | 0.6816 |
0.7527 | 11.0 | 4939 | 0.7360 | 0.6835 |
0.7526 | 12.0 | 5388 | 0.7493 | 0.6816 |
0.7476 | 13.0 | 5837 | 0.7421 | 0.6723 |
0.741 | 14.0 | 6286 | 0.7331 | 0.6929 |
0.7284 | 15.0 | 6735 | 0.7404 | 0.6854 |
0.7321 | 16.0 | 7184 | 0.7372 | 0.6798 |
0.7269 | 17.0 | 7633 | 0.7344 | 0.6816 |
0.7237 | 18.0 | 8082 | 0.7428 | 0.6723 |
0.7261 | 19.0 | 8531 | 0.7368 | 0.6854 |
0.7261 | 20.0 | 8980 | 0.7591 | 0.6704 |
0.715 | 21.0 | 9429 | 0.7434 | 0.6835 |
0.7088 | 22.0 | 9878 | 0.7504 | 0.6854 |
0.7228 | 23.0 | 10327 | 0.7500 | 0.6835 |
0.7127 | 24.0 | 10776 | 0.7583 | 0.6835 |
0.706 | 25.0 | 11225 | 0.7353 | 0.6948 |
0.7104 | 26.0 | 11674 | 0.7423 | 0.6891 |
0.7068 | 27.0 | 12123 | 0.7426 | 0.6910 |
0.7046 | 28.0 | 12572 | 0.7494 | 0.6873 |
0.7036 | 29.0 | 13021 | 0.7460 | 0.6910 |
0.7036 | 30.0 | 13470 | 0.7443 | 0.6873 |
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2