rajevan123's picture
End of training
8e4fe8c verified
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - accuracy
base_model: dslim/bert-base-NER
model-index:
  - name: STS-Lora-Fine-Tuning-Capstone-bert-testing-21-with-lower-r
    results: []

STS-Lora-Fine-Tuning-Capstone-bert-testing-21-with-lower-r

This model is a fine-tuned version of dslim/bert-base-NER on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5146
  • Accuracy: 0.3604

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 180 1.7493 0.2429
No log 2.0 360 1.7409 0.2444
1.7063 3.0 540 1.7315 0.2408
1.7063 4.0 720 1.7132 0.2741
1.7063 5.0 900 1.6786 0.2879
1.6653 6.0 1080 1.6617 0.2959
1.6653 7.0 1260 1.6399 0.3031
1.6653 8.0 1440 1.6109 0.3205
1.5949 9.0 1620 1.5937 0.3292
1.5949 10.0 1800 1.5715 0.3321
1.5949 11.0 1980 1.5627 0.3387
1.5344 12.0 2160 1.5543 0.3459
1.5344 13.0 2340 1.5396 0.3590
1.4932 14.0 2520 1.5295 0.3524
1.4932 15.0 2700 1.5270 0.3568
1.4932 16.0 2880 1.5240 0.3575
1.4738 17.0 3060 1.5177 0.3604
1.4738 18.0 3240 1.5185 0.3590
1.4738 19.0 3420 1.5156 0.3604
1.4609 20.0 3600 1.5146 0.3604

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2