|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import Any, List, Optional, Tuple, Union |
|
|
|
import torch.utils.checkpoint |
|
import transformers |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import AutoModel, GenerationConfig, LlamaForCausalLM, LlamaTokenizer |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ModelOutput, logging |
|
|
|
from .configuration_internvl_chat import InternVLChatConfig |
|
from .conversation import get_conv_template |
|
from .modeling_intern_vit import InternVisionModel, has_flash_attn |
|
from .modeling_internlm2 import InternLM2ForCausalLM |
|
|
|
import torch_xla.core.xla_model as xm |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def version_cmp(v1, v2, op="eq"): |
|
import operator |
|
|
|
from packaging import version |
|
|
|
op_func = getattr(operator, op) |
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
|
|
class InternVLChatModel(PreTrainedModel): |
|
config_class = InternVLChatConfig |
|
main_input_name = "pixel_values" |
|
_supports_flash_attn_2 = True |
|
_no_split_modules = [ |
|
"InternVisionModel", |
|
"LlamaDecoderLayer", |
|
"InternLM2DecoderLayer", |
|
] |
|
|
|
def __init__( |
|
self, |
|
config: InternVLChatConfig, |
|
vision_model=None, |
|
language_model=None, |
|
use_flash_attn=True, |
|
): |
|
super().__init__(config) |
|
|
|
assert version_cmp(transformers.__version__, "4.36.2", "ge") |
|
image_size = config.force_image_size or config.vision_config.image_size |
|
patch_size = config.vision_config.patch_size |
|
self.patch_size = patch_size |
|
self.select_layer = config.select_layer |
|
self.template = config.template |
|
self.num_image_token = int( |
|
(image_size // patch_size) ** 2 * (config.downsample_ratio**2) |
|
) |
|
self.downsample_ratio = config.downsample_ratio |
|
self.ps_version = config.ps_version |
|
use_flash_attn = use_flash_attn if has_flash_attn else False |
|
config.vision_config.use_flash_attn = True if use_flash_attn else False |
|
config.llm_config.attn_implementation = ( |
|
"flash_attention_2" if use_flash_attn else "eager" |
|
) |
|
|
|
logger.info(f"num_image_token: {self.num_image_token}") |
|
logger.info(f"ps_version: {self.ps_version}") |
|
if vision_model is not None: |
|
self.vision_model = vision_model |
|
else: |
|
self.vision_model = InternVisionModel(config.vision_config) |
|
if language_model is not None: |
|
self.language_model = language_model |
|
else: |
|
if config.llm_config.architectures[0] == "LlamaForCausalLM": |
|
self.language_model = LlamaForCausalLM(config.llm_config) |
|
elif config.llm_config.architectures[0] == "InternLM2ForCausalLM": |
|
self.language_model = InternLM2ForCausalLM(config.llm_config) |
|
else: |
|
raise NotImplementedError( |
|
f"{config.llm_config.architectures[0]} is not implemented." |
|
) |
|
|
|
vit_hidden_size = config.vision_config.hidden_size |
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
self.mlp1 = nn.Sequential( |
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), |
|
nn.Linear( |
|
vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size |
|
), |
|
nn.GELU(), |
|
nn.Linear(llm_hidden_size, llm_hidden_size), |
|
) |
|
|
|
self.img_context_token_id = None |
|
self.conv_template = get_conv_template(self.template) |
|
self.system_message = self.conv_template.system_message |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
image_flags: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
image_flags = image_flags.squeeze(-1) |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
vit_embeds = vit_embeds[image_flags == 1] |
|
vit_batch_size = pixel_values.shape[0] |
|
|
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
if torch.distributed.get_rank() == 0: |
|
print( |
|
f"dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}" |
|
) |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = input_ids == self.img_context_token_id |
|
try: |
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape( |
|
-1, C |
|
) |
|
except Exception as e: |
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
print( |
|
f"warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, " |
|
f"vit_embeds.shape={vit_embeds.shape}" |
|
) |
|
n_token = selected.sum() |
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
outputs = self.language_model( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
logits = outputs.logits |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
n, w, h, c = x.size() |
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
x = x.view( |
|
n, |
|
int(h * scale_factor), |
|
int(w * scale_factor), |
|
int(c / (scale_factor * scale_factor)), |
|
) |
|
if self.ps_version == "v1": |
|
warnings.warn( |
|
"In ps_version 'v1', the height and width have not been swapped back, " |
|
"which results in a transposed image." |
|
) |
|
else: |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
def extract_feature(self, pixel_values): |
|
if self.select_layer == -1: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, output_hidden_states=False, return_dict=True |
|
).last_hidden_state |
|
else: |
|
vit_embeds = self.vision_model( |
|
pixel_values=pixel_values, output_hidden_states=True, return_dict=True |
|
).hidden_states[self.select_layer] |
|
vit_embeds = vit_embeds[:, 1:, :] |
|
|
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) |
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
vit_embeds = self.mlp1(vit_embeds) |
|
return vit_embeds |
|
|
|
def batch_chat( |
|
self, |
|
tokenizer, |
|
pixel_values, |
|
questions, |
|
generation_config, |
|
num_patches_list=None, |
|
history=None, |
|
return_history=False, |
|
IMG_START_TOKEN="<img>", |
|
IMG_END_TOKEN="</img>", |
|
IMG_CONTEXT_TOKEN="<IMG_CONTEXT>", |
|
verbose=False, |
|
image_counts=None, |
|
): |
|
if history is not None or return_history: |
|
print("Now multi-turn chat is not supported in batch_chat.") |
|
raise NotImplementedError |
|
|
|
if image_counts is not None: |
|
num_patches_list = image_counts |
|
print( |
|
"Warning: `image_counts` is deprecated. Please use `num_patches_list` instead." |
|
) |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f"dynamic ViT batch size: {image_bs}") |
|
|
|
queries = [] |
|
for idx, num_patches in enumerate(num_patches_list): |
|
question = questions[idx] |
|
if pixel_values is not None and "<image>" not in question: |
|
question = "<image>\n" + question |
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
image_tokens = ( |
|
IMG_START_TOKEN |
|
+ IMG_CONTEXT_TOKEN * self.num_image_token * num_patches |
|
+ IMG_END_TOKEN |
|
) |
|
query = query.replace("<image>", image_tokens, 1) |
|
queries.append(query) |
|
|
|
tokenizer.padding_side = "left" |
|
model_inputs = tokenizer(queries, return_tensors="pt", padding=True) |
|
input_ids = model_inputs["input_ids"].to(xm.xla_device()) |
|
attention_mask = model_inputs["attention_mask"].to(xm.xla_device()) |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) |
|
generation_config["eos_token_id"] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config, |
|
) |
|
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) |
|
responses = [response.split(template.sep)[0].strip() for response in responses] |
|
return responses |
|
|
|
def chat( |
|
self, |
|
tokenizer, |
|
pixel_values, |
|
question, |
|
generation_config, |
|
history=None, |
|
return_history=False, |
|
num_patches_list=None, |
|
IMG_START_TOKEN="<img>", |
|
IMG_END_TOKEN="</img>", |
|
IMG_CONTEXT_TOKEN="<IMG_CONTEXT>", |
|
verbose=False, |
|
): |
|
|
|
if history is None and pixel_values is not None and "<image>" not in question: |
|
question = "<image>\n" + question |
|
|
|
if num_patches_list is None: |
|
num_patches_list = ( |
|
[pixel_values.shape[0]] if pixel_values is not None else [] |
|
) |
|
assert pixel_values is None or len(pixel_values) == sum(num_patches_list) |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) |
|
|
|
history = [] if history is None else history |
|
for old_question, old_answer in history: |
|
template.append_message(template.roles[0], old_question) |
|
template.append_message(template.roles[1], old_answer) |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f"dynamic ViT batch size: {image_bs}") |
|
|
|
for num_patches in num_patches_list: |
|
image_tokens = ( |
|
IMG_START_TOKEN |
|
+ IMG_CONTEXT_TOKEN * self.num_image_token * num_patches |
|
+ IMG_END_TOKEN |
|
) |
|
query = query.replace("<image>", image_tokens, 1) |
|
|
|
model_inputs = tokenizer(query, return_tensors="pt") |
|
input_ids = model_inputs["input_ids"].to(xm.xla_device()) |
|
attention_mask = model_inputs["attention_mask"].to(xm.xla_device()) |
|
generation_config["eos_token_id"] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config, |
|
) |
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[ |
|
0 |
|
] |
|
response = response.split(template.sep)[0].strip() |
|
history.append((question, response)) |
|
if return_history: |
|
return response, history |
|
else: |
|
query_to_print = query.replace(IMG_CONTEXT_TOKEN, "") |
|
query_to_print = query_to_print.replace( |
|
f"{IMG_START_TOKEN}{IMG_END_TOKEN}", "<image>" |
|
) |
|
if verbose: |
|
print(query_to_print, response) |
|
return response |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
input_ids: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
visual_features: Optional[torch.FloatTensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**generate_kwargs, |
|
) -> torch.LongTensor: |
|
|
|
assert self.img_context_token_id is not None |
|
if pixel_values is not None: |
|
if visual_features is not None: |
|
vit_embeds = visual_features |
|
else: |
|
vit_embeds = self.extract_feature(pixel_values) |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
B, N, C = input_embeds.shape |
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
input_ids = input_ids.reshape(B * N) |
|
selected = input_ids == self.img_context_token_id |
|
assert selected.sum() != 0 |
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
else: |
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
outputs = self.language_model.generate( |
|
inputs_embeds=input_embeds, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
use_cache=True, |
|
**generate_kwargs, |
|
) |
|
|
|
return outputs |
|
|