radna commited on
Commit
746cd35
1 Parent(s): fe44bfd

xla modeling

Browse files
Files changed (1) hide show
  1. modeling_internvl_chat.py +163 -92
modeling_internvl_chat.py CHANGED
@@ -10,8 +10,7 @@ import torch.utils.checkpoint
10
  import transformers
11
  from torch import nn
12
  from torch.nn import CrossEntropyLoss
13
- from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
- LlamaTokenizer)
15
  from transformers.modeling_outputs import CausalLMOutputWithPast
16
  from transformers.modeling_utils import PreTrainedModel
17
  from transformers.utils import ModelOutput, logging
@@ -21,41 +20,58 @@ from .conversation import get_conv_template
21
  from .modeling_intern_vit import InternVisionModel, has_flash_attn
22
  from .modeling_internlm2 import InternLM2ForCausalLM
23
 
 
 
24
  logger = logging.get_logger(__name__)
25
 
26
 
27
- def version_cmp(v1, v2, op='eq'):
28
  import operator
29
 
30
  from packaging import version
 
31
  op_func = getattr(operator, op)
32
  return op_func(version.parse(v1), version.parse(v2))
33
 
34
 
35
  class InternVLChatModel(PreTrainedModel):
36
  config_class = InternVLChatConfig
37
- main_input_name = 'pixel_values'
38
  _supports_flash_attn_2 = True
39
- _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
40
-
41
- def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
 
 
 
 
 
 
 
 
 
 
42
  super().__init__(config)
43
 
44
- assert version_cmp(transformers.__version__, '4.36.2', 'ge')
45
  image_size = config.force_image_size or config.vision_config.image_size
46
  patch_size = config.vision_config.patch_size
47
  self.patch_size = patch_size
48
  self.select_layer = config.select_layer
49
  self.template = config.template
50
- self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
 
 
51
  self.downsample_ratio = config.downsample_ratio
52
  self.ps_version = config.ps_version
53
  use_flash_attn = use_flash_attn if has_flash_attn else False
54
  config.vision_config.use_flash_attn = True if use_flash_attn else False
55
- config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
 
 
56
 
57
- logger.info(f'num_image_token: {self.num_image_token}')
58
- logger.info(f'ps_version: {self.ps_version}')
59
  if vision_model is not None:
60
  self.vision_model = vision_model
61
  else:
@@ -63,21 +79,25 @@ class InternVLChatModel(PreTrainedModel):
63
  if language_model is not None:
64
  self.language_model = language_model
65
  else:
66
- if config.llm_config.architectures[0] == 'LlamaForCausalLM':
67
  self.language_model = LlamaForCausalLM(config.llm_config)
68
- elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
69
  self.language_model = InternLM2ForCausalLM(config.llm_config)
70
  else:
71
- raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
 
 
72
 
73
  vit_hidden_size = config.vision_config.hidden_size
74
  llm_hidden_size = config.llm_config.hidden_size
75
 
76
  self.mlp1 = nn.Sequential(
77
  nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
78
- nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
 
 
79
  nn.GELU(),
80
- nn.Linear(llm_hidden_size, llm_hidden_size)
81
  )
82
 
83
  self.img_context_token_id = None
@@ -85,20 +105,22 @@ class InternVLChatModel(PreTrainedModel):
85
  self.system_message = self.conv_template.system_message
86
 
87
  def forward(
88
- self,
89
- pixel_values: torch.FloatTensor,
90
- input_ids: torch.LongTensor = None,
91
- attention_mask: Optional[torch.Tensor] = None,
92
- position_ids: Optional[torch.LongTensor] = None,
93
- image_flags: Optional[torch.LongTensor] = None,
94
- past_key_values: Optional[List[torch.FloatTensor]] = None,
95
- labels: Optional[torch.LongTensor] = None,
96
- use_cache: Optional[bool] = None,
97
- output_attentions: Optional[bool] = None,
98
- output_hidden_states: Optional[bool] = None,
99
- return_dict: Optional[bool] = None,
100
  ) -> Union[Tuple, CausalLMOutputWithPast]:
101
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 
 
102
 
103
  image_flags = image_flags.squeeze(-1)
104
  input_embeds = self.language_model.get_input_embeddings()(input_ids)
@@ -111,16 +133,22 @@ class InternVLChatModel(PreTrainedModel):
111
  input_embeds = input_embeds.reshape(B * N, C)
112
 
113
  if torch.distributed.get_rank() == 0:
114
- print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
 
 
115
 
116
  input_ids = input_ids.reshape(B * N)
117
- selected = (input_ids == self.img_context_token_id)
118
  try:
119
- input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
 
 
120
  except Exception as e:
121
  vit_embeds = vit_embeds.reshape(-1, C)
122
- print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
123
- f'vit_embeds.shape={vit_embeds.shape}')
 
 
124
  n_token = selected.sum()
125
  input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
126
 
@@ -170,11 +198,17 @@ class InternVLChatModel(PreTrainedModel):
170
  # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
171
  x = x.permute(0, 2, 1, 3).contiguous()
172
  # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
173
- x = x.view(n, int(h * scale_factor), int(w * scale_factor),
174
- int(c / (scale_factor * scale_factor)))
175
- if self.ps_version == 'v1':
176
- warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
177
- 'which results in a transposed image.')
 
 
 
 
 
 
178
  else:
179
  x = x.permute(0, 2, 1, 3).contiguous()
180
  return x
@@ -182,14 +216,12 @@ class InternVLChatModel(PreTrainedModel):
182
  def extract_feature(self, pixel_values):
183
  if self.select_layer == -1:
184
  vit_embeds = self.vision_model(
185
- pixel_values=pixel_values,
186
- output_hidden_states=False,
187
- return_dict=True).last_hidden_state
188
  else:
189
  vit_embeds = self.vision_model(
190
- pixel_values=pixel_values,
191
- output_hidden_states=True,
192
- return_dict=True).hidden_states[self.select_layer]
193
  vit_embeds = vit_embeds[:, 1:, :]
194
 
195
  h = w = int(vit_embeds.shape[1] ** 0.5)
@@ -199,64 +231,95 @@ class InternVLChatModel(PreTrainedModel):
199
  vit_embeds = self.mlp1(vit_embeds)
200
  return vit_embeds
201
 
202
- def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
203
- history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
204
- IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
 
 
 
 
 
 
 
 
 
 
 
 
205
  if history is not None or return_history:
206
- print('Now multi-turn chat is not supported in batch_chat.')
207
  raise NotImplementedError
208
 
209
  if image_counts is not None:
210
  num_patches_list = image_counts
211
- print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
 
 
212
 
213
  img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
214
  self.img_context_token_id = img_context_token_id
215
 
216
  if verbose and pixel_values is not None:
217
  image_bs = pixel_values.shape[0]
218
- print(f'dynamic ViT batch size: {image_bs}')
219
 
220
  queries = []
221
  for idx, num_patches in enumerate(num_patches_list):
222
  question = questions[idx]
223
- if pixel_values is not None and '<image>' not in question:
224
- question = '<image>\n' + question
225
  template = get_conv_template(self.template)
226
  template.system_message = self.system_message
227
  template.append_message(template.roles[0], question)
228
  template.append_message(template.roles[1], None)
229
  query = template.get_prompt()
230
 
231
- image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
232
- query = query.replace('<image>', image_tokens, 1)
 
 
 
 
233
  queries.append(query)
234
 
235
- tokenizer.padding_side = 'left'
236
- model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
237
- input_ids = model_inputs['input_ids'].cuda()
238
- attention_mask = model_inputs['attention_mask'].cuda()
239
  eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
240
- generation_config['eos_token_id'] = eos_token_id
241
  generation_output = self.generate(
242
  pixel_values=pixel_values,
243
  input_ids=input_ids,
244
  attention_mask=attention_mask,
245
- **generation_config
246
  )
247
  responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
248
  responses = [response.split(template.sep)[0].strip() for response in responses]
249
  return responses
250
 
251
- def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
252
- num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
253
- verbose=False):
254
-
255
- if history is None and pixel_values is not None and '<image>' not in question:
256
- question = '<image>\n' + question
 
 
 
 
 
 
 
 
 
 
 
257
 
258
  if num_patches_list is None:
259
- num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
 
 
260
  assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
261
 
262
  img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
@@ -267,7 +330,7 @@ class InternVLChatModel(PreTrainedModel):
267
  eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
268
 
269
  history = [] if history is None else history
270
- for (old_question, old_answer) in history:
271
  template.append_message(template.roles[0], old_question)
272
  template.append_message(template.roles[1], old_answer)
273
  template.append_message(template.roles[0], question)
@@ -276,45 +339,53 @@ class InternVLChatModel(PreTrainedModel):
276
 
277
  if verbose and pixel_values is not None:
278
  image_bs = pixel_values.shape[0]
279
- print(f'dynamic ViT batch size: {image_bs}')
280
 
281
  for num_patches in num_patches_list:
282
- image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
283
- query = query.replace('<image>', image_tokens, 1)
284
-
285
- model_inputs = tokenizer(query, return_tensors='pt')
286
- input_ids = model_inputs['input_ids'].cuda()
287
- attention_mask = model_inputs['attention_mask'].cuda()
288
- generation_config['eos_token_id'] = eos_token_id
 
 
 
 
289
  generation_output = self.generate(
290
  pixel_values=pixel_values,
291
  input_ids=input_ids,
292
  attention_mask=attention_mask,
293
- **generation_config
294
  )
295
- response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
 
 
296
  response = response.split(template.sep)[0].strip()
297
  history.append((question, response))
298
  if return_history:
299
  return response, history
300
  else:
301
- query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
302
- query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
 
 
303
  if verbose:
304
  print(query_to_print, response)
305
  return response
306
 
307
  @torch.no_grad()
308
  def generate(
309
- self,
310
- pixel_values: Optional[torch.FloatTensor] = None,
311
- input_ids: Optional[torch.FloatTensor] = None,
312
- attention_mask: Optional[torch.LongTensor] = None,
313
- visual_features: Optional[torch.FloatTensor] = None,
314
- generation_config: Optional[GenerationConfig] = None,
315
- output_hidden_states: Optional[bool] = None,
316
- return_dict: Optional[bool] = None,
317
- **generate_kwargs,
318
  ) -> torch.LongTensor:
319
 
320
  assert self.img_context_token_id is not None
@@ -328,7 +399,7 @@ class InternVLChatModel(PreTrainedModel):
328
  input_embeds = input_embeds.reshape(B * N, C)
329
 
330
  input_ids = input_ids.reshape(B * N)
331
- selected = (input_ids == self.img_context_token_id)
332
  assert selected.sum() != 0
333
  input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
334
 
 
10
  import transformers
11
  from torch import nn
12
  from torch.nn import CrossEntropyLoss
13
+ from transformers import AutoModel, GenerationConfig, LlamaForCausalLM, LlamaTokenizer
 
14
  from transformers.modeling_outputs import CausalLMOutputWithPast
15
  from transformers.modeling_utils import PreTrainedModel
16
  from transformers.utils import ModelOutput, logging
 
20
  from .modeling_intern_vit import InternVisionModel, has_flash_attn
21
  from .modeling_internlm2 import InternLM2ForCausalLM
22
 
23
+ import torch_xla.core.xla_model as xm
24
+
25
  logger = logging.get_logger(__name__)
26
 
27
 
28
+ def version_cmp(v1, v2, op="eq"):
29
  import operator
30
 
31
  from packaging import version
32
+
33
  op_func = getattr(operator, op)
34
  return op_func(version.parse(v1), version.parse(v2))
35
 
36
 
37
  class InternVLChatModel(PreTrainedModel):
38
  config_class = InternVLChatConfig
39
+ main_input_name = "pixel_values"
40
  _supports_flash_attn_2 = True
41
+ _no_split_modules = [
42
+ "InternVisionModel",
43
+ "LlamaDecoderLayer",
44
+ "InternLM2DecoderLayer",
45
+ ]
46
+
47
+ def __init__(
48
+ self,
49
+ config: InternVLChatConfig,
50
+ vision_model=None,
51
+ language_model=None,
52
+ use_flash_attn=True,
53
+ ):
54
  super().__init__(config)
55
 
56
+ assert version_cmp(transformers.__version__, "4.36.2", "ge")
57
  image_size = config.force_image_size or config.vision_config.image_size
58
  patch_size = config.vision_config.patch_size
59
  self.patch_size = patch_size
60
  self.select_layer = config.select_layer
61
  self.template = config.template
62
+ self.num_image_token = int(
63
+ (image_size // patch_size) ** 2 * (config.downsample_ratio**2)
64
+ )
65
  self.downsample_ratio = config.downsample_ratio
66
  self.ps_version = config.ps_version
67
  use_flash_attn = use_flash_attn if has_flash_attn else False
68
  config.vision_config.use_flash_attn = True if use_flash_attn else False
69
+ config.llm_config.attn_implementation = (
70
+ "flash_attention_2" if use_flash_attn else "eager"
71
+ )
72
 
73
+ logger.info(f"num_image_token: {self.num_image_token}")
74
+ logger.info(f"ps_version: {self.ps_version}")
75
  if vision_model is not None:
76
  self.vision_model = vision_model
77
  else:
 
79
  if language_model is not None:
80
  self.language_model = language_model
81
  else:
82
+ if config.llm_config.architectures[0] == "LlamaForCausalLM":
83
  self.language_model = LlamaForCausalLM(config.llm_config)
84
+ elif config.llm_config.architectures[0] == "InternLM2ForCausalLM":
85
  self.language_model = InternLM2ForCausalLM(config.llm_config)
86
  else:
87
+ raise NotImplementedError(
88
+ f"{config.llm_config.architectures[0]} is not implemented."
89
+ )
90
 
91
  vit_hidden_size = config.vision_config.hidden_size
92
  llm_hidden_size = config.llm_config.hidden_size
93
 
94
  self.mlp1 = nn.Sequential(
95
  nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
96
+ nn.Linear(
97
+ vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size
98
+ ),
99
  nn.GELU(),
100
+ nn.Linear(llm_hidden_size, llm_hidden_size),
101
  )
102
 
103
  self.img_context_token_id = None
 
105
  self.system_message = self.conv_template.system_message
106
 
107
  def forward(
108
+ self,
109
+ pixel_values: torch.FloatTensor,
110
+ input_ids: torch.LongTensor = None,
111
+ attention_mask: Optional[torch.Tensor] = None,
112
+ position_ids: Optional[torch.LongTensor] = None,
113
+ image_flags: Optional[torch.LongTensor] = None,
114
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
115
+ labels: Optional[torch.LongTensor] = None,
116
+ use_cache: Optional[bool] = None,
117
+ output_attentions: Optional[bool] = None,
118
+ output_hidden_states: Optional[bool] = None,
119
+ return_dict: Optional[bool] = None,
120
  ) -> Union[Tuple, CausalLMOutputWithPast]:
121
+ return_dict = (
122
+ return_dict if return_dict is not None else self.config.use_return_dict
123
+ )
124
 
125
  image_flags = image_flags.squeeze(-1)
126
  input_embeds = self.language_model.get_input_embeddings()(input_ids)
 
133
  input_embeds = input_embeds.reshape(B * N, C)
134
 
135
  if torch.distributed.get_rank() == 0:
136
+ print(
137
+ f"dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}"
138
+ )
139
 
140
  input_ids = input_ids.reshape(B * N)
141
+ selected = input_ids == self.img_context_token_id
142
  try:
143
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(
144
+ -1, C
145
+ )
146
  except Exception as e:
147
  vit_embeds = vit_embeds.reshape(-1, C)
148
+ print(
149
+ f"warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, "
150
+ f"vit_embeds.shape={vit_embeds.shape}"
151
+ )
152
  n_token = selected.sum()
153
  input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
154
 
 
198
  # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
199
  x = x.permute(0, 2, 1, 3).contiguous()
200
  # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
201
+ x = x.view(
202
+ n,
203
+ int(h * scale_factor),
204
+ int(w * scale_factor),
205
+ int(c / (scale_factor * scale_factor)),
206
+ )
207
+ if self.ps_version == "v1":
208
+ warnings.warn(
209
+ "In ps_version 'v1', the height and width have not been swapped back, "
210
+ "which results in a transposed image."
211
+ )
212
  else:
213
  x = x.permute(0, 2, 1, 3).contiguous()
214
  return x
 
216
  def extract_feature(self, pixel_values):
217
  if self.select_layer == -1:
218
  vit_embeds = self.vision_model(
219
+ pixel_values=pixel_values, output_hidden_states=False, return_dict=True
220
+ ).last_hidden_state
 
221
  else:
222
  vit_embeds = self.vision_model(
223
+ pixel_values=pixel_values, output_hidden_states=True, return_dict=True
224
+ ).hidden_states[self.select_layer]
 
225
  vit_embeds = vit_embeds[:, 1:, :]
226
 
227
  h = w = int(vit_embeds.shape[1] ** 0.5)
 
231
  vit_embeds = self.mlp1(vit_embeds)
232
  return vit_embeds
233
 
234
+ def batch_chat(
235
+ self,
236
+ tokenizer,
237
+ pixel_values,
238
+ questions,
239
+ generation_config,
240
+ num_patches_list=None,
241
+ history=None,
242
+ return_history=False,
243
+ IMG_START_TOKEN="<img>",
244
+ IMG_END_TOKEN="</img>",
245
+ IMG_CONTEXT_TOKEN="<IMG_CONTEXT>",
246
+ verbose=False,
247
+ image_counts=None,
248
+ ):
249
  if history is not None or return_history:
250
+ print("Now multi-turn chat is not supported in batch_chat.")
251
  raise NotImplementedError
252
 
253
  if image_counts is not None:
254
  num_patches_list = image_counts
255
+ print(
256
+ "Warning: `image_counts` is deprecated. Please use `num_patches_list` instead."
257
+ )
258
 
259
  img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
260
  self.img_context_token_id = img_context_token_id
261
 
262
  if verbose and pixel_values is not None:
263
  image_bs = pixel_values.shape[0]
264
+ print(f"dynamic ViT batch size: {image_bs}")
265
 
266
  queries = []
267
  for idx, num_patches in enumerate(num_patches_list):
268
  question = questions[idx]
269
+ if pixel_values is not None and "<image>" not in question:
270
+ question = "<image>\n" + question
271
  template = get_conv_template(self.template)
272
  template.system_message = self.system_message
273
  template.append_message(template.roles[0], question)
274
  template.append_message(template.roles[1], None)
275
  query = template.get_prompt()
276
 
277
+ image_tokens = (
278
+ IMG_START_TOKEN
279
+ + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
280
+ + IMG_END_TOKEN
281
+ )
282
+ query = query.replace("<image>", image_tokens, 1)
283
  queries.append(query)
284
 
285
+ tokenizer.padding_side = "left"
286
+ model_inputs = tokenizer(queries, return_tensors="pt", padding=True)
287
+ input_ids = model_inputs["input_ids"].to(xm.xla_device())
288
+ attention_mask = model_inputs["attention_mask"].to(xm.xla_device())
289
  eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
290
+ generation_config["eos_token_id"] = eos_token_id
291
  generation_output = self.generate(
292
  pixel_values=pixel_values,
293
  input_ids=input_ids,
294
  attention_mask=attention_mask,
295
+ **generation_config,
296
  )
297
  responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
298
  responses = [response.split(template.sep)[0].strip() for response in responses]
299
  return responses
300
 
301
+ def chat(
302
+ self,
303
+ tokenizer,
304
+ pixel_values,
305
+ question,
306
+ generation_config,
307
+ history=None,
308
+ return_history=False,
309
+ num_patches_list=None,
310
+ IMG_START_TOKEN="<img>",
311
+ IMG_END_TOKEN="</img>",
312
+ IMG_CONTEXT_TOKEN="<IMG_CONTEXT>",
313
+ verbose=False,
314
+ ):
315
+
316
+ if history is None and pixel_values is not None and "<image>" not in question:
317
+ question = "<image>\n" + question
318
 
319
  if num_patches_list is None:
320
+ num_patches_list = (
321
+ [pixel_values.shape[0]] if pixel_values is not None else []
322
+ )
323
  assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
324
 
325
  img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
 
330
  eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
331
 
332
  history = [] if history is None else history
333
+ for old_question, old_answer in history:
334
  template.append_message(template.roles[0], old_question)
335
  template.append_message(template.roles[1], old_answer)
336
  template.append_message(template.roles[0], question)
 
339
 
340
  if verbose and pixel_values is not None:
341
  image_bs = pixel_values.shape[0]
342
+ print(f"dynamic ViT batch size: {image_bs}")
343
 
344
  for num_patches in num_patches_list:
345
+ image_tokens = (
346
+ IMG_START_TOKEN
347
+ + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
348
+ + IMG_END_TOKEN
349
+ )
350
+ query = query.replace("<image>", image_tokens, 1)
351
+
352
+ model_inputs = tokenizer(query, return_tensors="pt")
353
+ input_ids = model_inputs["input_ids"].to(xm.xla_device())
354
+ attention_mask = model_inputs["attention_mask"].to(xm.xla_device())
355
+ generation_config["eos_token_id"] = eos_token_id
356
  generation_output = self.generate(
357
  pixel_values=pixel_values,
358
  input_ids=input_ids,
359
  attention_mask=attention_mask,
360
+ **generation_config,
361
  )
362
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[
363
+ 0
364
+ ]
365
  response = response.split(template.sep)[0].strip()
366
  history.append((question, response))
367
  if return_history:
368
  return response, history
369
  else:
370
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, "")
371
+ query_to_print = query_to_print.replace(
372
+ f"{IMG_START_TOKEN}{IMG_END_TOKEN}", "<image>"
373
+ )
374
  if verbose:
375
  print(query_to_print, response)
376
  return response
377
 
378
  @torch.no_grad()
379
  def generate(
380
+ self,
381
+ pixel_values: Optional[torch.FloatTensor] = None,
382
+ input_ids: Optional[torch.FloatTensor] = None,
383
+ attention_mask: Optional[torch.LongTensor] = None,
384
+ visual_features: Optional[torch.FloatTensor] = None,
385
+ generation_config: Optional[GenerationConfig] = None,
386
+ output_hidden_states: Optional[bool] = None,
387
+ return_dict: Optional[bool] = None,
388
+ **generate_kwargs,
389
  ) -> torch.LongTensor:
390
 
391
  assert self.img_context_token_id is not None
 
399
  input_embeds = input_embeds.reshape(B * N, C)
400
 
401
  input_ids = input_ids.reshape(B * N)
402
+ selected = input_ids == self.img_context_token_id
403
  assert selected.sum() != 0
404
  input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
405