xla modeling
Browse files- modeling_internvl_chat.py +163 -92
modeling_internvl_chat.py
CHANGED
@@ -10,8 +10,7 @@ import torch.utils.checkpoint
|
|
10 |
import transformers
|
11 |
from torch import nn
|
12 |
from torch.nn import CrossEntropyLoss
|
13 |
-
from transformers import
|
14 |
-
LlamaTokenizer)
|
15 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
16 |
from transformers.modeling_utils import PreTrainedModel
|
17 |
from transformers.utils import ModelOutput, logging
|
@@ -21,41 +20,58 @@ from .conversation import get_conv_template
|
|
21 |
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
22 |
from .modeling_internlm2 import InternLM2ForCausalLM
|
23 |
|
|
|
|
|
24 |
logger = logging.get_logger(__name__)
|
25 |
|
26 |
|
27 |
-
def version_cmp(v1, v2, op=
|
28 |
import operator
|
29 |
|
30 |
from packaging import version
|
|
|
31 |
op_func = getattr(operator, op)
|
32 |
return op_func(version.parse(v1), version.parse(v2))
|
33 |
|
34 |
|
35 |
class InternVLChatModel(PreTrainedModel):
|
36 |
config_class = InternVLChatConfig
|
37 |
-
main_input_name =
|
38 |
_supports_flash_attn_2 = True
|
39 |
-
_no_split_modules = [
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
super().__init__(config)
|
43 |
|
44 |
-
assert version_cmp(transformers.__version__,
|
45 |
image_size = config.force_image_size or config.vision_config.image_size
|
46 |
patch_size = config.vision_config.patch_size
|
47 |
self.patch_size = patch_size
|
48 |
self.select_layer = config.select_layer
|
49 |
self.template = config.template
|
50 |
-
self.num_image_token = int(
|
|
|
|
|
51 |
self.downsample_ratio = config.downsample_ratio
|
52 |
self.ps_version = config.ps_version
|
53 |
use_flash_attn = use_flash_attn if has_flash_attn else False
|
54 |
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
55 |
-
config.llm_config.attn_implementation =
|
|
|
|
|
56 |
|
57 |
-
logger.info(f
|
58 |
-
logger.info(f
|
59 |
if vision_model is not None:
|
60 |
self.vision_model = vision_model
|
61 |
else:
|
@@ -63,21 +79,25 @@ class InternVLChatModel(PreTrainedModel):
|
|
63 |
if language_model is not None:
|
64 |
self.language_model = language_model
|
65 |
else:
|
66 |
-
if config.llm_config.architectures[0] ==
|
67 |
self.language_model = LlamaForCausalLM(config.llm_config)
|
68 |
-
elif config.llm_config.architectures[0] ==
|
69 |
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
70 |
else:
|
71 |
-
raise NotImplementedError(
|
|
|
|
|
72 |
|
73 |
vit_hidden_size = config.vision_config.hidden_size
|
74 |
llm_hidden_size = config.llm_config.hidden_size
|
75 |
|
76 |
self.mlp1 = nn.Sequential(
|
77 |
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
78 |
-
nn.Linear(
|
|
|
|
|
79 |
nn.GELU(),
|
80 |
-
nn.Linear(llm_hidden_size, llm_hidden_size)
|
81 |
)
|
82 |
|
83 |
self.img_context_token_id = None
|
@@ -85,20 +105,22 @@ class InternVLChatModel(PreTrainedModel):
|
|
85 |
self.system_message = self.conv_template.system_message
|
86 |
|
87 |
def forward(
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
101 |
-
return_dict =
|
|
|
|
|
102 |
|
103 |
image_flags = image_flags.squeeze(-1)
|
104 |
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
@@ -111,16 +133,22 @@ class InternVLChatModel(PreTrainedModel):
|
|
111 |
input_embeds = input_embeds.reshape(B * N, C)
|
112 |
|
113 |
if torch.distributed.get_rank() == 0:
|
114 |
-
print(
|
|
|
|
|
115 |
|
116 |
input_ids = input_ids.reshape(B * N)
|
117 |
-
selected =
|
118 |
try:
|
119 |
-
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(
|
|
|
|
|
120 |
except Exception as e:
|
121 |
vit_embeds = vit_embeds.reshape(-1, C)
|
122 |
-
print(
|
123 |
-
|
|
|
|
|
124 |
n_token = selected.sum()
|
125 |
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
126 |
|
@@ -170,11 +198,17 @@ class InternVLChatModel(PreTrainedModel):
|
|
170 |
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
171 |
x = x.permute(0, 2, 1, 3).contiguous()
|
172 |
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
173 |
-
x = x.view(
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
else:
|
179 |
x = x.permute(0, 2, 1, 3).contiguous()
|
180 |
return x
|
@@ -182,14 +216,12 @@ class InternVLChatModel(PreTrainedModel):
|
|
182 |
def extract_feature(self, pixel_values):
|
183 |
if self.select_layer == -1:
|
184 |
vit_embeds = self.vision_model(
|
185 |
-
pixel_values=pixel_values,
|
186 |
-
|
187 |
-
return_dict=True).last_hidden_state
|
188 |
else:
|
189 |
vit_embeds = self.vision_model(
|
190 |
-
pixel_values=pixel_values,
|
191 |
-
|
192 |
-
return_dict=True).hidden_states[self.select_layer]
|
193 |
vit_embeds = vit_embeds[:, 1:, :]
|
194 |
|
195 |
h = w = int(vit_embeds.shape[1] ** 0.5)
|
@@ -199,64 +231,95 @@ class InternVLChatModel(PreTrainedModel):
|
|
199 |
vit_embeds = self.mlp1(vit_embeds)
|
200 |
return vit_embeds
|
201 |
|
202 |
-
def batch_chat(
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
if history is not None or return_history:
|
206 |
-
print(
|
207 |
raise NotImplementedError
|
208 |
|
209 |
if image_counts is not None:
|
210 |
num_patches_list = image_counts
|
211 |
-
print(
|
|
|
|
|
212 |
|
213 |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
214 |
self.img_context_token_id = img_context_token_id
|
215 |
|
216 |
if verbose and pixel_values is not None:
|
217 |
image_bs = pixel_values.shape[0]
|
218 |
-
print(f
|
219 |
|
220 |
queries = []
|
221 |
for idx, num_patches in enumerate(num_patches_list):
|
222 |
question = questions[idx]
|
223 |
-
if pixel_values is not None and
|
224 |
-
question =
|
225 |
template = get_conv_template(self.template)
|
226 |
template.system_message = self.system_message
|
227 |
template.append_message(template.roles[0], question)
|
228 |
template.append_message(template.roles[1], None)
|
229 |
query = template.get_prompt()
|
230 |
|
231 |
-
image_tokens =
|
232 |
-
|
|
|
|
|
|
|
|
|
233 |
queries.append(query)
|
234 |
|
235 |
-
tokenizer.padding_side =
|
236 |
-
model_inputs = tokenizer(queries, return_tensors=
|
237 |
-
input_ids = model_inputs[
|
238 |
-
attention_mask = model_inputs[
|
239 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
240 |
-
generation_config[
|
241 |
generation_output = self.generate(
|
242 |
pixel_values=pixel_values,
|
243 |
input_ids=input_ids,
|
244 |
attention_mask=attention_mask,
|
245 |
-
**generation_config
|
246 |
)
|
247 |
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
248 |
responses = [response.split(template.sep)[0].strip() for response in responses]
|
249 |
return responses
|
250 |
|
251 |
-
def chat(
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
if num_patches_list is None:
|
259 |
-
num_patches_list =
|
|
|
|
|
260 |
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
261 |
|
262 |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
@@ -267,7 +330,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
267 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
268 |
|
269 |
history = [] if history is None else history
|
270 |
-
for
|
271 |
template.append_message(template.roles[0], old_question)
|
272 |
template.append_message(template.roles[1], old_answer)
|
273 |
template.append_message(template.roles[0], question)
|
@@ -276,45 +339,53 @@ class InternVLChatModel(PreTrainedModel):
|
|
276 |
|
277 |
if verbose and pixel_values is not None:
|
278 |
image_bs = pixel_values.shape[0]
|
279 |
-
print(f
|
280 |
|
281 |
for num_patches in num_patches_list:
|
282 |
-
image_tokens =
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
|
|
289 |
generation_output = self.generate(
|
290 |
pixel_values=pixel_values,
|
291 |
input_ids=input_ids,
|
292 |
attention_mask=attention_mask,
|
293 |
-
**generation_config
|
294 |
)
|
295 |
-
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[
|
|
|
|
|
296 |
response = response.split(template.sep)[0].strip()
|
297 |
history.append((question, response))
|
298 |
if return_history:
|
299 |
return response, history
|
300 |
else:
|
301 |
-
query_to_print = query.replace(IMG_CONTEXT_TOKEN,
|
302 |
-
query_to_print = query_to_print.replace(
|
|
|
|
|
303 |
if verbose:
|
304 |
print(query_to_print, response)
|
305 |
return response
|
306 |
|
307 |
@torch.no_grad()
|
308 |
def generate(
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
) -> torch.LongTensor:
|
319 |
|
320 |
assert self.img_context_token_id is not None
|
@@ -328,7 +399,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
328 |
input_embeds = input_embeds.reshape(B * N, C)
|
329 |
|
330 |
input_ids = input_ids.reshape(B * N)
|
331 |
-
selected =
|
332 |
assert selected.sum() != 0
|
333 |
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
334 |
|
|
|
10 |
import transformers
|
11 |
from torch import nn
|
12 |
from torch.nn import CrossEntropyLoss
|
13 |
+
from transformers import AutoModel, GenerationConfig, LlamaForCausalLM, LlamaTokenizer
|
|
|
14 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
15 |
from transformers.modeling_utils import PreTrainedModel
|
16 |
from transformers.utils import ModelOutput, logging
|
|
|
20 |
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
21 |
from .modeling_internlm2 import InternLM2ForCausalLM
|
22 |
|
23 |
+
import torch_xla.core.xla_model as xm
|
24 |
+
|
25 |
logger = logging.get_logger(__name__)
|
26 |
|
27 |
|
28 |
+
def version_cmp(v1, v2, op="eq"):
|
29 |
import operator
|
30 |
|
31 |
from packaging import version
|
32 |
+
|
33 |
op_func = getattr(operator, op)
|
34 |
return op_func(version.parse(v1), version.parse(v2))
|
35 |
|
36 |
|
37 |
class InternVLChatModel(PreTrainedModel):
|
38 |
config_class = InternVLChatConfig
|
39 |
+
main_input_name = "pixel_values"
|
40 |
_supports_flash_attn_2 = True
|
41 |
+
_no_split_modules = [
|
42 |
+
"InternVisionModel",
|
43 |
+
"LlamaDecoderLayer",
|
44 |
+
"InternLM2DecoderLayer",
|
45 |
+
]
|
46 |
+
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
config: InternVLChatConfig,
|
50 |
+
vision_model=None,
|
51 |
+
language_model=None,
|
52 |
+
use_flash_attn=True,
|
53 |
+
):
|
54 |
super().__init__(config)
|
55 |
|
56 |
+
assert version_cmp(transformers.__version__, "4.36.2", "ge")
|
57 |
image_size = config.force_image_size or config.vision_config.image_size
|
58 |
patch_size = config.vision_config.patch_size
|
59 |
self.patch_size = patch_size
|
60 |
self.select_layer = config.select_layer
|
61 |
self.template = config.template
|
62 |
+
self.num_image_token = int(
|
63 |
+
(image_size // patch_size) ** 2 * (config.downsample_ratio**2)
|
64 |
+
)
|
65 |
self.downsample_ratio = config.downsample_ratio
|
66 |
self.ps_version = config.ps_version
|
67 |
use_flash_attn = use_flash_attn if has_flash_attn else False
|
68 |
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
69 |
+
config.llm_config.attn_implementation = (
|
70 |
+
"flash_attention_2" if use_flash_attn else "eager"
|
71 |
+
)
|
72 |
|
73 |
+
logger.info(f"num_image_token: {self.num_image_token}")
|
74 |
+
logger.info(f"ps_version: {self.ps_version}")
|
75 |
if vision_model is not None:
|
76 |
self.vision_model = vision_model
|
77 |
else:
|
|
|
79 |
if language_model is not None:
|
80 |
self.language_model = language_model
|
81 |
else:
|
82 |
+
if config.llm_config.architectures[0] == "LlamaForCausalLM":
|
83 |
self.language_model = LlamaForCausalLM(config.llm_config)
|
84 |
+
elif config.llm_config.architectures[0] == "InternLM2ForCausalLM":
|
85 |
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
86 |
else:
|
87 |
+
raise NotImplementedError(
|
88 |
+
f"{config.llm_config.architectures[0]} is not implemented."
|
89 |
+
)
|
90 |
|
91 |
vit_hidden_size = config.vision_config.hidden_size
|
92 |
llm_hidden_size = config.llm_config.hidden_size
|
93 |
|
94 |
self.mlp1 = nn.Sequential(
|
95 |
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
96 |
+
nn.Linear(
|
97 |
+
vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size
|
98 |
+
),
|
99 |
nn.GELU(),
|
100 |
+
nn.Linear(llm_hidden_size, llm_hidden_size),
|
101 |
)
|
102 |
|
103 |
self.img_context_token_id = None
|
|
|
105 |
self.system_message = self.conv_template.system_message
|
106 |
|
107 |
def forward(
|
108 |
+
self,
|
109 |
+
pixel_values: torch.FloatTensor,
|
110 |
+
input_ids: torch.LongTensor = None,
|
111 |
+
attention_mask: Optional[torch.Tensor] = None,
|
112 |
+
position_ids: Optional[torch.LongTensor] = None,
|
113 |
+
image_flags: Optional[torch.LongTensor] = None,
|
114 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
115 |
+
labels: Optional[torch.LongTensor] = None,
|
116 |
+
use_cache: Optional[bool] = None,
|
117 |
+
output_attentions: Optional[bool] = None,
|
118 |
+
output_hidden_states: Optional[bool] = None,
|
119 |
+
return_dict: Optional[bool] = None,
|
120 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
121 |
+
return_dict = (
|
122 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
123 |
+
)
|
124 |
|
125 |
image_flags = image_flags.squeeze(-1)
|
126 |
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
|
|
133 |
input_embeds = input_embeds.reshape(B * N, C)
|
134 |
|
135 |
if torch.distributed.get_rank() == 0:
|
136 |
+
print(
|
137 |
+
f"dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}"
|
138 |
+
)
|
139 |
|
140 |
input_ids = input_ids.reshape(B * N)
|
141 |
+
selected = input_ids == self.img_context_token_id
|
142 |
try:
|
143 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(
|
144 |
+
-1, C
|
145 |
+
)
|
146 |
except Exception as e:
|
147 |
vit_embeds = vit_embeds.reshape(-1, C)
|
148 |
+
print(
|
149 |
+
f"warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, "
|
150 |
+
f"vit_embeds.shape={vit_embeds.shape}"
|
151 |
+
)
|
152 |
n_token = selected.sum()
|
153 |
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
154 |
|
|
|
198 |
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
199 |
x = x.permute(0, 2, 1, 3).contiguous()
|
200 |
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
201 |
+
x = x.view(
|
202 |
+
n,
|
203 |
+
int(h * scale_factor),
|
204 |
+
int(w * scale_factor),
|
205 |
+
int(c / (scale_factor * scale_factor)),
|
206 |
+
)
|
207 |
+
if self.ps_version == "v1":
|
208 |
+
warnings.warn(
|
209 |
+
"In ps_version 'v1', the height and width have not been swapped back, "
|
210 |
+
"which results in a transposed image."
|
211 |
+
)
|
212 |
else:
|
213 |
x = x.permute(0, 2, 1, 3).contiguous()
|
214 |
return x
|
|
|
216 |
def extract_feature(self, pixel_values):
|
217 |
if self.select_layer == -1:
|
218 |
vit_embeds = self.vision_model(
|
219 |
+
pixel_values=pixel_values, output_hidden_states=False, return_dict=True
|
220 |
+
).last_hidden_state
|
|
|
221 |
else:
|
222 |
vit_embeds = self.vision_model(
|
223 |
+
pixel_values=pixel_values, output_hidden_states=True, return_dict=True
|
224 |
+
).hidden_states[self.select_layer]
|
|
|
225 |
vit_embeds = vit_embeds[:, 1:, :]
|
226 |
|
227 |
h = w = int(vit_embeds.shape[1] ** 0.5)
|
|
|
231 |
vit_embeds = self.mlp1(vit_embeds)
|
232 |
return vit_embeds
|
233 |
|
234 |
+
def batch_chat(
|
235 |
+
self,
|
236 |
+
tokenizer,
|
237 |
+
pixel_values,
|
238 |
+
questions,
|
239 |
+
generation_config,
|
240 |
+
num_patches_list=None,
|
241 |
+
history=None,
|
242 |
+
return_history=False,
|
243 |
+
IMG_START_TOKEN="<img>",
|
244 |
+
IMG_END_TOKEN="</img>",
|
245 |
+
IMG_CONTEXT_TOKEN="<IMG_CONTEXT>",
|
246 |
+
verbose=False,
|
247 |
+
image_counts=None,
|
248 |
+
):
|
249 |
if history is not None or return_history:
|
250 |
+
print("Now multi-turn chat is not supported in batch_chat.")
|
251 |
raise NotImplementedError
|
252 |
|
253 |
if image_counts is not None:
|
254 |
num_patches_list = image_counts
|
255 |
+
print(
|
256 |
+
"Warning: `image_counts` is deprecated. Please use `num_patches_list` instead."
|
257 |
+
)
|
258 |
|
259 |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
260 |
self.img_context_token_id = img_context_token_id
|
261 |
|
262 |
if verbose and pixel_values is not None:
|
263 |
image_bs = pixel_values.shape[0]
|
264 |
+
print(f"dynamic ViT batch size: {image_bs}")
|
265 |
|
266 |
queries = []
|
267 |
for idx, num_patches in enumerate(num_patches_list):
|
268 |
question = questions[idx]
|
269 |
+
if pixel_values is not None and "<image>" not in question:
|
270 |
+
question = "<image>\n" + question
|
271 |
template = get_conv_template(self.template)
|
272 |
template.system_message = self.system_message
|
273 |
template.append_message(template.roles[0], question)
|
274 |
template.append_message(template.roles[1], None)
|
275 |
query = template.get_prompt()
|
276 |
|
277 |
+
image_tokens = (
|
278 |
+
IMG_START_TOKEN
|
279 |
+
+ IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
|
280 |
+
+ IMG_END_TOKEN
|
281 |
+
)
|
282 |
+
query = query.replace("<image>", image_tokens, 1)
|
283 |
queries.append(query)
|
284 |
|
285 |
+
tokenizer.padding_side = "left"
|
286 |
+
model_inputs = tokenizer(queries, return_tensors="pt", padding=True)
|
287 |
+
input_ids = model_inputs["input_ids"].to(xm.xla_device())
|
288 |
+
attention_mask = model_inputs["attention_mask"].to(xm.xla_device())
|
289 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
290 |
+
generation_config["eos_token_id"] = eos_token_id
|
291 |
generation_output = self.generate(
|
292 |
pixel_values=pixel_values,
|
293 |
input_ids=input_ids,
|
294 |
attention_mask=attention_mask,
|
295 |
+
**generation_config,
|
296 |
)
|
297 |
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
298 |
responses = [response.split(template.sep)[0].strip() for response in responses]
|
299 |
return responses
|
300 |
|
301 |
+
def chat(
|
302 |
+
self,
|
303 |
+
tokenizer,
|
304 |
+
pixel_values,
|
305 |
+
question,
|
306 |
+
generation_config,
|
307 |
+
history=None,
|
308 |
+
return_history=False,
|
309 |
+
num_patches_list=None,
|
310 |
+
IMG_START_TOKEN="<img>",
|
311 |
+
IMG_END_TOKEN="</img>",
|
312 |
+
IMG_CONTEXT_TOKEN="<IMG_CONTEXT>",
|
313 |
+
verbose=False,
|
314 |
+
):
|
315 |
+
|
316 |
+
if history is None and pixel_values is not None and "<image>" not in question:
|
317 |
+
question = "<image>\n" + question
|
318 |
|
319 |
if num_patches_list is None:
|
320 |
+
num_patches_list = (
|
321 |
+
[pixel_values.shape[0]] if pixel_values is not None else []
|
322 |
+
)
|
323 |
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
324 |
|
325 |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
|
|
330 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
331 |
|
332 |
history = [] if history is None else history
|
333 |
+
for old_question, old_answer in history:
|
334 |
template.append_message(template.roles[0], old_question)
|
335 |
template.append_message(template.roles[1], old_answer)
|
336 |
template.append_message(template.roles[0], question)
|
|
|
339 |
|
340 |
if verbose and pixel_values is not None:
|
341 |
image_bs = pixel_values.shape[0]
|
342 |
+
print(f"dynamic ViT batch size: {image_bs}")
|
343 |
|
344 |
for num_patches in num_patches_list:
|
345 |
+
image_tokens = (
|
346 |
+
IMG_START_TOKEN
|
347 |
+
+ IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
|
348 |
+
+ IMG_END_TOKEN
|
349 |
+
)
|
350 |
+
query = query.replace("<image>", image_tokens, 1)
|
351 |
+
|
352 |
+
model_inputs = tokenizer(query, return_tensors="pt")
|
353 |
+
input_ids = model_inputs["input_ids"].to(xm.xla_device())
|
354 |
+
attention_mask = model_inputs["attention_mask"].to(xm.xla_device())
|
355 |
+
generation_config["eos_token_id"] = eos_token_id
|
356 |
generation_output = self.generate(
|
357 |
pixel_values=pixel_values,
|
358 |
input_ids=input_ids,
|
359 |
attention_mask=attention_mask,
|
360 |
+
**generation_config,
|
361 |
)
|
362 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[
|
363 |
+
0
|
364 |
+
]
|
365 |
response = response.split(template.sep)[0].strip()
|
366 |
history.append((question, response))
|
367 |
if return_history:
|
368 |
return response, history
|
369 |
else:
|
370 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, "")
|
371 |
+
query_to_print = query_to_print.replace(
|
372 |
+
f"{IMG_START_TOKEN}{IMG_END_TOKEN}", "<image>"
|
373 |
+
)
|
374 |
if verbose:
|
375 |
print(query_to_print, response)
|
376 |
return response
|
377 |
|
378 |
@torch.no_grad()
|
379 |
def generate(
|
380 |
+
self,
|
381 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
382 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
383 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
384 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
385 |
+
generation_config: Optional[GenerationConfig] = None,
|
386 |
+
output_hidden_states: Optional[bool] = None,
|
387 |
+
return_dict: Optional[bool] = None,
|
388 |
+
**generate_kwargs,
|
389 |
) -> torch.LongTensor:
|
390 |
|
391 |
assert self.img_context_token_id is not None
|
|
|
399 |
input_embeds = input_embeds.reshape(B * N, C)
|
400 |
|
401 |
input_ids = input_ids.reshape(B * N)
|
402 |
+
selected = input_ids == self.img_context_token_id
|
403 |
assert selected.sum() != 0
|
404 |
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
405 |
|