qaihm-bot commited on
Commit
c4a0871
·
verified ·
1 Parent(s): bb1caa5

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +232 -0
README.md ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - COCO
4
+ library_name: pytorch
5
+ license: apache-2.0
6
+ pipeline_tag: object-detection
7
+ tags:
8
+ - real_time
9
+ - android
10
+
11
+ ---
12
+
13
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolonas/web-assets/model_demo.png)
14
+
15
+ # Yolo-NAS: Optimized for Mobile Deployment
16
+ ## Real-time object detection optimized for mobile and edge
17
+
18
+ YoloNAS is a machine learning model that predicts bounding boxes and classes of objects in an image.
19
+
20
+ This model is an implementation of Yolo-NAS found [here](https://github.com/Deci-AI/super-gradients).
21
+ This repository provides scripts to run Yolo-NAS on Qualcomm® devices.
22
+ More details on model performance across various devices, can be found
23
+ [here](https://aihub.qualcomm.com/models/yolonas).
24
+
25
+
26
+ ### Model Details
27
+
28
+ - **Model Type:** Object detection
29
+ - **Model Stats:**
30
+ - Model checkpoint: YoloNAS Small
31
+ - Input resolution: 640x640
32
+ - Number of parameters: 12.2M
33
+ - Model size: 46.6 MB
34
+
35
+
36
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
+ | ---|---|---|---|---|---|---|---|
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 11.744 ms | 0 - 7 MB | FP16 | NPU | [Yolo-NAS.tflite](https://huggingface.co/qualcomm/Yolo-NAS/blob/main/Yolo-NAS.tflite)
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 14.893 ms | 6 - 23 MB | FP16 | NPU | [Yolo-NAS.so](https://huggingface.co/qualcomm/Yolo-NAS/blob/main/Yolo-NAS.so)
40
+
41
+
42
+ ## Installation
43
+
44
+ This model can be installed as a Python package via pip.
45
+
46
+ ```bash
47
+ pip install "qai-hub-models[yolonas]"
48
+ ```
49
+
50
+
51
+
52
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
53
+
54
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
55
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
56
+
57
+ With this API token, you can configure your client to run models on the cloud
58
+ hosted devices.
59
+ ```bash
60
+ qai-hub configure --api_token API_TOKEN
61
+ ```
62
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
63
+
64
+
65
+
66
+ ## Demo off target
67
+
68
+ The package contains a simple end-to-end demo that downloads pre-trained
69
+ weights and runs this model on a sample input.
70
+
71
+ ```bash
72
+ python -m qai_hub_models.models.yolonas.demo
73
+ ```
74
+
75
+ The above demo runs a reference implementation of pre-processing, model
76
+ inference, and post processing.
77
+
78
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
79
+ environment, please add the following to your cell (instead of the above).
80
+ ```
81
+ %run -m qai_hub_models.models.yolonas.demo
82
+ ```
83
+
84
+
85
+ ### Run model on a cloud-hosted device
86
+
87
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
88
+ device. This script does the following:
89
+ * Performance check on-device on a cloud-hosted device
90
+ * Downloads compiled assets that can be deployed on-device for Android.
91
+ * Accuracy check between PyTorch and on-device outputs.
92
+
93
+ ```bash
94
+ python -m qai_hub_models.models.yolonas.export
95
+ ```
96
+
97
+ ```
98
+ Profile Job summary of Yolo-NAS
99
+ --------------------------------------------------
100
+ Device: Snapdragon X Elite CRD (11)
101
+ Estimated Inference Time: 11.90 ms
102
+ Estimated Peak Memory Range: 4.70-4.70 MB
103
+ Compute Units: NPU (289) | Total (289)
104
+
105
+
106
+ ```
107
+ ## How does this work?
108
+
109
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-NAS/export.py)
110
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
111
+ on-device. Lets go through each step below in detail:
112
+
113
+ Step 1: **Compile model for on-device deployment**
114
+
115
+ To compile a PyTorch model for on-device deployment, we first trace the model
116
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
117
+
118
+ ```python
119
+ import torch
120
+
121
+ import qai_hub as hub
122
+ from qai_hub_models.models.yolonas import Model
123
+
124
+ # Load the model
125
+ torch_model = Model.from_pretrained()
126
+ torch_model.eval()
127
+
128
+ # Device
129
+ device = hub.Device("Samsung Galaxy S23")
130
+
131
+ # Trace model
132
+ input_shape = torch_model.get_input_spec()
133
+ sample_inputs = torch_model.sample_inputs()
134
+
135
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
136
+
137
+ # Compile model on a specific device
138
+ compile_job = hub.submit_compile_job(
139
+ model=pt_model,
140
+ device=device,
141
+ input_specs=torch_model.get_input_spec(),
142
+ )
143
+
144
+ # Get target model to run on-device
145
+ target_model = compile_job.get_target_model()
146
+
147
+ ```
148
+
149
+
150
+ Step 2: **Performance profiling on cloud-hosted device**
151
+
152
+ After compiling models from step 1. Models can be profiled model on-device using the
153
+ `target_model`. Note that this scripts runs the model on a device automatically
154
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
155
+ provided job URL to view a variety of on-device performance metrics.
156
+ ```python
157
+ profile_job = hub.submit_profile_job(
158
+ model=target_model,
159
+ device=device,
160
+ )
161
+
162
+ ```
163
+
164
+ Step 3: **Verify on-device accuracy**
165
+
166
+ To verify the accuracy of the model on-device, you can run on-device inference
167
+ on sample input data on the same cloud hosted device.
168
+ ```python
169
+ input_data = torch_model.sample_inputs()
170
+ inference_job = hub.submit_inference_job(
171
+ model=target_model,
172
+ device=device,
173
+ inputs=input_data,
174
+ )
175
+
176
+ on_device_output = inference_job.download_output_data()
177
+
178
+ ```
179
+ With the output of the model, you can compute like PSNR, relative errors or
180
+ spot check the output with expected output.
181
+
182
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
183
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
184
+
185
+
186
+ ## Run demo on a cloud-hosted device
187
+
188
+ You can also run the demo on-device.
189
+
190
+ ```bash
191
+ python -m qai_hub_models.models.yolonas.demo --on-device
192
+ ```
193
+
194
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
195
+ environment, please add the following to your cell (instead of the above).
196
+ ```
197
+ %run -m qai_hub_models.models.yolonas.demo -- --on-device
198
+ ```
199
+
200
+
201
+ ## Deploying compiled model to Android
202
+
203
+
204
+ The models can be deployed using multiple runtimes:
205
+ - TensorFlow Lite (`.tflite` export): [This
206
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
207
+ guide to deploy the .tflite model in an Android application.
208
+
209
+
210
+ - QNN (`.so` export ): This [sample
211
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
212
+ provides instructions on how to use the `.so` shared library in an Android application.
213
+
214
+
215
+ ## View on Qualcomm® AI Hub
216
+ Get more details on Yolo-NAS's performance across various devices [here](https://aihub.qualcomm.com/models/yolonas).
217
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
218
+
219
+ ## License
220
+ - The license for the original implementation of Yolo-NAS can be found
221
+ [here](https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.YOLONAS.md).
222
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
223
+
224
+ ## References
225
+ * [YOLO-NAS by Deci Achieves SOTA Performance on Object Detection Using Neural Architecture Search](https://deci.ai/blog/yolo-nas-object-detection-foundation-model/)
226
+ * [Source Model Implementation](https://github.com/Deci-AI/super-gradients)
227
+
228
+ ## Community
229
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
230
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
231
+
232
+