qaihm-bot commited on
Commit
38cfd41
·
verified ·
1 Parent(s): e301845

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +4 -21
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: pytorch
3
  license: mit
4
- pipeline_tag: image-to-text
5
  tags:
6
  - android
7
 
@@ -22,7 +22,7 @@ More details on model performance across various devices, can be found
22
 
23
  ### Model Details
24
 
25
- - **Model Type:** Image to text
26
  - **Model Stats:**
27
  - Model checkpoint: trocr-small-stage1
28
  - Input resolution: 320x320
@@ -34,8 +34,8 @@ More details on model performance across various devices, can be found
34
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 216.492 ms | 7 - 10 MB | FP16 | NPU | [TrOCREncoder.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite)
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.684 ms | 0 - 2 MB | FP16 | NPU | [TrOCRDecoder.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite)
39
 
40
 
41
  ## Installation
@@ -93,23 +93,6 @@ device. This script does the following:
93
  python -m qai_hub_models.models.trocr.export
94
  ```
95
 
96
- ```
97
- Profile Job summary of TrOCREncoder
98
- --------------------------------------------------
99
- Device: QCS8550 (Proxy) (12)
100
- Estimated Inference Time: 216.41 ms
101
- Estimated Peak Memory Range: 6.94-9.92 MB
102
- Compute Units: NPU (592) | Total (592)
103
-
104
- Profile Job summary of TrOCRDecoder
105
- --------------------------------------------------
106
- Device: QCS8550 (Proxy) (12)
107
- Estimated Inference Time: 2.69 ms
108
- Estimated Peak Memory Range: 0.02-1.94 MB
109
- Compute Units: NPU (370) | Total (370)
110
-
111
-
112
- ```
113
  ## How does this work?
114
 
115
  This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/TrOCR/export.py)
 
1
  ---
2
  library_name: pytorch
3
  license: mit
4
+ pipeline_tag: depth-estimation
5
  tags:
6
  - android
7
 
 
22
 
23
  ### Model Details
24
 
25
+ - **Model Type:** Depth estimation
26
  - **Model Stats:**
27
  - Model checkpoint: trocr-small-stage1
28
  - Input resolution: 320x320
 
34
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 149.663 ms | 7 - 10 MB | FP16 | NPU | [TrOCREncoder.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite)
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.717 ms | 0 - 2 MB | FP16 | NPU | [TrOCRDecoder.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite)
39
 
40
 
41
  ## Installation
 
93
  python -m qai_hub_models.models.trocr.export
94
  ```
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  ## How does this work?
97
 
98
  This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/TrOCR/export.py)