Image Classification
PyTorch
TF Lite
ONNX
backbone
android
shreyajn commited on
Commit
c086f59
1 Parent(s): 615b901

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -11,7 +11,7 @@ tags:
11
 
12
  ---
13
 
14
- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/swin_small/web-assets/banner.png)
15
 
16
  # Swin-Small: Optimized for Mobile Deployment
17
  ## Imagenet classifier and general purpose backbone
@@ -36,7 +36,7 @@ More details on model performance across various devices, can be found
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 52.492 ms | 0 - 212 MB | FP16 | GPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite)
40
 
41
 
42
  ## Installation
@@ -97,9 +97,9 @@ python -m qai_hub_models.models.swin_small.export
97
  Profile Job summary of Swin-Small
98
  --------------------------------------------------
99
  Device: Samsung Galaxy S23 Ultra (13)
100
- Estimated Inference Time: 52.49 ms
101
- Estimated Peak Memory Range: 0.01-211.72 MB
102
- Compute Units: GPU (1965) | Total (1965)
103
 
104
 
105
  ```
@@ -179,7 +179,7 @@ With the output of the model, you can compute like PSNR, relative errors or
179
  spot check the output with expected output.
180
 
181
  **Note**: This on-device profiling and inference requires access to Qualcomm®
182
- AI Hub. [Sign up for early access](https://aihub.qualcomm.com/sign-up).
183
 
184
 
185
  ## Run demo on a cloud-hosted device
 
11
 
12
  ---
13
 
14
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/swin_small/web-assets/model_demo.png)
15
 
16
  # Swin-Small: Optimized for Mobile Deployment
17
  ## Imagenet classifier and general purpose backbone
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 51.094 ms | 0 - 3 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite)
40
 
41
 
42
  ## Installation
 
97
  Profile Job summary of Swin-Small
98
  --------------------------------------------------
99
  Device: Samsung Galaxy S23 Ultra (13)
100
+ Estimated Inference Time: 51.09 ms
101
+ Estimated Peak Memory Range: 0.11-3.18 MB
102
+ Compute Units: NPU (1965) | Total (1965)
103
 
104
 
105
  ```
 
179
  spot check the output with expected output.
180
 
181
  **Note**: This on-device profiling and inference requires access to Qualcomm®
182
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
183
 
184
 
185
  ## Run demo on a cloud-hosted device