qaihm-bot commited on
Commit
7c91a8d
·
verified ·
1 Parent(s): 3fae644

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +99 -18
README.md CHANGED
@@ -19,7 +19,7 @@ tags:
19
 
20
  SqueezeNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
21
 
22
- This model is an implementation of SqueezeNet-1_1Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py).
23
  This repository provides scripts to run SqueezeNet-1_1Quantized on Qualcomm® devices.
24
  More details on model performance across various devices, can be found
25
  [here](https://aihub.qualcomm.com/models/squeezenet1_1_quantized).
@@ -34,26 +34,43 @@ More details on model performance across various devices, can be found
34
  - Number of parameters: 1.24M
35
  - Model size: 1.30 MB
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
 
39
 
40
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
41
- | ---|---|---|---|---|---|---|---|
42
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.197 ms | 0 - 1 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite)
43
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.462 ms | 0 - 3 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.so](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.so)
44
-
45
-
46
 
47
  ## Installation
48
 
49
  This model can be installed as a Python package via pip.
50
 
51
  ```bash
52
- pip install "qai-hub-models[squeezenet1_1_quantized]"
53
  ```
54
 
55
 
56
-
57
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
58
 
59
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
@@ -98,18 +115,78 @@ device. This script does the following:
98
  ```bash
99
  python -m qai_hub_models.models.squeezenet1_1_quantized.export
100
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  ```
103
- Profile Job summary of SqueezeNet-1_1Quantized
104
- --------------------------------------------------
105
- Device: Snapdragon X Elite CRD (11)
106
- Estimated Inference Time: 0.54 ms
107
- Estimated Peak Memory Range: 0.53-0.53 MB
108
- Compute Units: NPU (45) | Total (45)
109
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
  ```
 
 
112
 
 
 
113
 
114
 
115
 
@@ -146,15 +223,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
146
  Get more details on SqueezeNet-1_1Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/squeezenet1_1_quantized).
147
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
148
 
 
149
  ## License
150
- - The license for the original implementation of SqueezeNet-1_1Quantized can be found
151
- [here](https://github.com/pytorch/vision/blob/main/LICENSE).
152
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
153
 
154
  ## References
155
  * [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360)
156
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py)
157
 
 
 
158
  ## Community
159
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
160
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
 
19
 
20
  SqueezeNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
21
 
22
+ This model is an implementation of SqueezeNet-1_1Quantized found [here]({source_repo}).
23
  This repository provides scripts to run SqueezeNet-1_1Quantized on Qualcomm® devices.
24
  More details on model performance across various devices, can be found
25
  [here](https://aihub.qualcomm.com/models/squeezenet1_1_quantized).
 
34
  - Number of parameters: 1.24M
35
  - Model size: 1.30 MB
36
 
37
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ |---|---|---|---|---|---|---|---|---|
39
+ | SqueezeNet-1_1Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.205 ms | 0 - 68 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
40
+ | SqueezeNet-1_1Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.466 ms | 0 - 3 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.so](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.so) |
41
+ | SqueezeNet-1_1Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.467 ms | 0 - 2 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.onnx](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.onnx) |
42
+ | SqueezeNet-1_1Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.2 ms | 0 - 26 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
43
+ | SqueezeNet-1_1Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.344 ms | 0 - 12 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.so](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.so) |
44
+ | SqueezeNet-1_1Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.437 ms | 0 - 30 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.onnx](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.onnx) |
45
+ | SqueezeNet-1_1Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 0.493 ms | 0 - 17 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
46
+ | SqueezeNet-1_1Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 0.997 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
47
+ | SqueezeNet-1_1Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 4.154 ms | 0 - 7 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
48
+ | SqueezeNet-1_1Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.205 ms | 0 - 3 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
49
+ | SqueezeNet-1_1Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.43 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
50
+ | SqueezeNet-1_1Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.205 ms | 0 - 69 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
51
+ | SqueezeNet-1_1Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.429 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
52
+ | SqueezeNet-1_1Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.201 ms | 0 - 23 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
53
+ | SqueezeNet-1_1Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.429 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
54
+ | SqueezeNet-1_1Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.235 ms | 0 - 27 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
55
+ | SqueezeNet-1_1Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.533 ms | 0 - 13 MB | INT8 | NPU | Use Export Script |
56
+ | SqueezeNet-1_1Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.147 ms | 0 - 16 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.tflite](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.tflite) |
57
+ | SqueezeNet-1_1Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.345 ms | 0 - 9 MB | INT8 | NPU | Use Export Script |
58
+ | SqueezeNet-1_1Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.39 ms | 0 - 18 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.onnx](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.onnx) |
59
+ | SqueezeNet-1_1Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.553 ms | 1 - 1 MB | INT8 | NPU | Use Export Script |
60
+ | SqueezeNet-1_1Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.524 ms | 2 - 2 MB | INT8 | NPU | [SqueezeNet-1_1Quantized.onnx](https://huggingface.co/qualcomm/SqueezeNet-1_1Quantized/blob/main/SqueezeNet-1_1Quantized.onnx) |
61
 
62
 
63
 
 
 
 
 
 
 
64
 
65
  ## Installation
66
 
67
  This model can be installed as a Python package via pip.
68
 
69
  ```bash
70
+ pip install qai-hub-models
71
  ```
72
 
73
 
 
74
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
75
 
76
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
 
115
  ```bash
116
  python -m qai_hub_models.models.squeezenet1_1_quantized.export
117
  ```
118
+ ```
119
+ Profiling Results
120
+ ------------------------------------------------------------
121
+ SqueezeNet-1_1Quantized
122
+ Device : Samsung Galaxy S23 (13)
123
+ Runtime : TFLITE
124
+ Estimated inference time (ms) : 0.2
125
+ Estimated peak memory usage (MB): [0, 68]
126
+ Total # Ops : 43
127
+ Compute Unit(s) : NPU (43 ops)
128
+ ```
129
+
130
+
131
+ ## How does this work?
132
+
133
+ This [export script](https://aihub.qualcomm.com/models/squeezenet1_1_quantized/qai_hub_models/models/SqueezeNet-1_1Quantized/export.py)
134
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
135
+ on-device. Lets go through each step below in detail:
136
+
137
+ Step 1: **Compile model for on-device deployment**
138
+
139
+ To compile a PyTorch model for on-device deployment, we first trace the model
140
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
141
+
142
+ ```python
143
+ import torch
144
+
145
+ import qai_hub as hub
146
+ from qai_hub_models.models.squeezenet1_1_quantized import
147
+
148
+ # Load the model
149
 
150
+ # Device
151
+ device = hub.Device("Samsung Galaxy S23")
152
+
153
+
154
+ ```
155
+
156
+
157
+ Step 2: **Performance profiling on cloud-hosted device**
158
+
159
+ After compiling models from step 1. Models can be profiled model on-device using the
160
+ `target_model`. Note that this scripts runs the model on a device automatically
161
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
162
+ provided job URL to view a variety of on-device performance metrics.
163
+ ```python
164
+ profile_job = hub.submit_profile_job(
165
+ model=target_model,
166
+ device=device,
167
+ )
168
+
169
  ```
 
 
 
 
 
 
170
 
171
+ Step 3: **Verify on-device accuracy**
172
+
173
+ To verify the accuracy of the model on-device, you can run on-device inference
174
+ on sample input data on the same cloud hosted device.
175
+ ```python
176
+ input_data = torch_model.sample_inputs()
177
+ inference_job = hub.submit_inference_job(
178
+ model=target_model,
179
+ device=device,
180
+ inputs=input_data,
181
+ )
182
+ on_device_output = inference_job.download_output_data()
183
 
184
  ```
185
+ With the output of the model, you can compute like PSNR, relative errors or
186
+ spot check the output with expected output.
187
 
188
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
189
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
190
 
191
 
192
 
 
223
  Get more details on SqueezeNet-1_1Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/squeezenet1_1_quantized).
224
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
225
 
226
+
227
  ## License
228
+ * The license for the original implementation of SqueezeNet-1_1Quantized can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
229
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
230
+
231
+
232
 
233
  ## References
234
  * [SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size](https://arxiv.org/abs/1602.07360)
235
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/squeezenet.py)
236
 
237
+
238
+
239
  ## Community
240
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
241
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).