qaihm-bot commited on
Commit
49e632e
·
verified ·
1 Parent(s): aed88da

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -37,8 +37,8 @@ More details on model performance across various devices, can be found
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.533 ms | 0 - 1 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite)
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.809 ms | 1 - 5 MB | FP16 | NPU | [MobileNet-v2.so](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.so)
42
 
43
 
44
  ## Installation
@@ -98,16 +98,16 @@ python -m qai_hub_models.models.mobilenet_v2.export
98
  ```
99
  Profile Job summary of MobileNet-v2
100
  --------------------------------------------------
101
- Device: Samsung Galaxy S23 Ultra (13)
102
- Estimated Inference Time: 0.53 ms
103
- Estimated Peak Memory Range: 0.02-1.40 MB
104
  Compute Units: NPU (70) | Total (70)
105
 
106
  Profile Job summary of MobileNet-v2
107
  --------------------------------------------------
108
- Device: Samsung Galaxy S23 Ultra (13)
109
- Estimated Inference Time: 0.81 ms
110
- Estimated Peak Memory Range: 0.59-5.47 MB
111
  Compute Units: NPU (104) | Total (104)
112
 
113
 
@@ -227,7 +227,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
227
  ## License
228
  - The license for the original implementation of MobileNet-v2 can be found
229
  [here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
230
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
231
 
232
  ## References
233
  * [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
 
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.54 ms | 0 - 2 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.808 ms | 1 - 6 MB | FP16 | NPU | [MobileNet-v2.so](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.so)
42
 
43
 
44
  ## Installation
 
98
  ```
99
  Profile Job summary of MobileNet-v2
100
  --------------------------------------------------
101
+ Device: Samsung Galaxy S24 (14)
102
+ Estimated Inference Time: 0.39 ms
103
+ Estimated Peak Memory Range: 0.01-52.93 MB
104
  Compute Units: NPU (70) | Total (70)
105
 
106
  Profile Job summary of MobileNet-v2
107
  --------------------------------------------------
108
+ Device: Samsung Galaxy S24 (14)
109
+ Estimated Inference Time: 0.54 ms
110
+ Estimated Peak Memory Range: 0.59-35.38 MB
111
  Compute Units: NPU (104) | Total (104)
112
 
113
 
 
227
  ## License
228
  - The license for the original implementation of MobileNet-v2 can be found
229
  [here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
230
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
231
 
232
  ## References
233
  * [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)