Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -37,8 +37,8 @@ More details on model performance across various devices, can be found
|
|
| 37 |
|
| 38 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 39 |
| ---|---|---|---|---|---|---|---|
|
| 40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.
|
| 41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.
|
| 42 |
|
| 43 |
|
| 44 |
## Installation
|
|
@@ -98,16 +98,16 @@ python -m qai_hub_models.models.mobilenet_v2.export
|
|
| 98 |
```
|
| 99 |
Profile Job summary of MobileNet-v2
|
| 100 |
--------------------------------------------------
|
| 101 |
-
Device: Samsung Galaxy
|
| 102 |
-
Estimated Inference Time: 0.
|
| 103 |
-
Estimated Peak Memory Range: 0.
|
| 104 |
Compute Units: NPU (70) | Total (70)
|
| 105 |
|
| 106 |
Profile Job summary of MobileNet-v2
|
| 107 |
--------------------------------------------------
|
| 108 |
-
Device: Samsung Galaxy
|
| 109 |
-
Estimated Inference Time: 0.
|
| 110 |
-
Estimated Peak Memory Range: 0.59-
|
| 111 |
Compute Units: NPU (104) | Total (104)
|
| 112 |
|
| 113 |
|
|
@@ -227,7 +227,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
| 227 |
## License
|
| 228 |
- The license for the original implementation of MobileNet-v2 can be found
|
| 229 |
[here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
|
| 230 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
| 231 |
|
| 232 |
## References
|
| 233 |
* [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
|
|
|
|
| 37 |
|
| 38 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 39 |
| ---|---|---|---|---|---|---|---|
|
| 40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.54 ms | 0 - 2 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite)
|
| 41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.808 ms | 1 - 6 MB | FP16 | NPU | [MobileNet-v2.so](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.so)
|
| 42 |
|
| 43 |
|
| 44 |
## Installation
|
|
|
|
| 98 |
```
|
| 99 |
Profile Job summary of MobileNet-v2
|
| 100 |
--------------------------------------------------
|
| 101 |
+
Device: Samsung Galaxy S24 (14)
|
| 102 |
+
Estimated Inference Time: 0.39 ms
|
| 103 |
+
Estimated Peak Memory Range: 0.01-52.93 MB
|
| 104 |
Compute Units: NPU (70) | Total (70)
|
| 105 |
|
| 106 |
Profile Job summary of MobileNet-v2
|
| 107 |
--------------------------------------------------
|
| 108 |
+
Device: Samsung Galaxy S24 (14)
|
| 109 |
+
Estimated Inference Time: 0.54 ms
|
| 110 |
+
Estimated Peak Memory Range: 0.59-35.38 MB
|
| 111 |
Compute Units: NPU (104) | Total (104)
|
| 112 |
|
| 113 |
|
|
|
|
| 227 |
## License
|
| 228 |
- The license for the original implementation of MobileNet-v2 can be found
|
| 229 |
[here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
|
| 230 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
| 231 |
|
| 232 |
## References
|
| 233 |
* [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
|