qaihm-bot commited on
Commit
bd53889
1 Parent(s): 272340d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +228 -0
README.md ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: mit
4
+ pipeline_tag: depth-estimation
5
+ tags:
6
+ - android
7
+
8
+ ---
9
+
10
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/midas/web-assets/model_demo.png)
11
+
12
+ # Midas-V2: Optimized for Mobile Deployment
13
+ ## Deep Convolutional Neural Network model for depth estimation
14
+
15
+ Midas is designed for estimating depth at each point in an image.
16
+
17
+ This model is an implementation of Midas-V2 found [here](https://github.com/isl-org/MiDaS).
18
+ This repository provides scripts to run Midas-V2 on Qualcomm® devices.
19
+ More details on model performance across various devices, can be found
20
+ [here](https://aihub.qualcomm.com/models/midas).
21
+
22
+
23
+ ### Model Details
24
+
25
+ - **Model Type:** Depth estimation
26
+ - **Model Stats:**
27
+ - Model checkpoint: MiDaS_small
28
+ - Input resolution: 256x256
29
+ - Number of parameters: 16.6M
30
+ - Model size: 63.2 MB
31
+
32
+
33
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
+ | ---|---|---|---|---|---|---|---|
35
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.425 ms | 0 - 2 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite)
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.375 ms | 0 - 18 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so)
37
+
38
+
39
+ ## Installation
40
+
41
+ This model can be installed as a Python package via pip.
42
+
43
+ ```bash
44
+ pip install qai-hub-models
45
+ ```
46
+
47
+
48
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
49
+
50
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
51
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
52
+
53
+ With this API token, you can configure your client to run models on the cloud
54
+ hosted devices.
55
+ ```bash
56
+ qai-hub configure --api_token API_TOKEN
57
+ ```
58
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
59
+
60
+
61
+
62
+ ## Demo off target
63
+
64
+ The package contains a simple end-to-end demo that downloads pre-trained
65
+ weights and runs this model on a sample input.
66
+
67
+ ```bash
68
+ python -m qai_hub_models.models.midas.demo
69
+ ```
70
+
71
+ The above demo runs a reference implementation of pre-processing, model
72
+ inference, and post processing.
73
+
74
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
75
+ environment, please add the following to your cell (instead of the above).
76
+ ```
77
+ %run -m qai_hub_models.models.midas.demo
78
+ ```
79
+
80
+
81
+ ### Run model on a cloud-hosted device
82
+
83
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
84
+ device. This script does the following:
85
+ * Performance check on-device on a cloud-hosted device
86
+ * Downloads compiled assets that can be deployed on-device for Android.
87
+ * Accuracy check between PyTorch and on-device outputs.
88
+
89
+ ```bash
90
+ python -m qai_hub_models.models.midas.export
91
+ ```
92
+
93
+ ```
94
+ Profile Job summary of Midas-V2
95
+ --------------------------------------------------
96
+ Device: Snapdragon X Elite CRD (11)
97
+ Estimated Inference Time: 3.59 ms
98
+ Estimated Peak Memory Range: 0.75-0.75 MB
99
+ Compute Units: NPU (199) | Total (199)
100
+
101
+
102
+ ```
103
+ ## How does this work?
104
+
105
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Midas-V2/export.py)
106
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
107
+ on-device. Lets go through each step below in detail:
108
+
109
+ Step 1: **Compile model for on-device deployment**
110
+
111
+ To compile a PyTorch model for on-device deployment, we first trace the model
112
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
113
+
114
+ ```python
115
+ import torch
116
+
117
+ import qai_hub as hub
118
+ from qai_hub_models.models.midas import Model
119
+
120
+ # Load the model
121
+ torch_model = Model.from_pretrained()
122
+ torch_model.eval()
123
+
124
+ # Device
125
+ device = hub.Device("Samsung Galaxy S23")
126
+
127
+ # Trace model
128
+ input_shape = torch_model.get_input_spec()
129
+ sample_inputs = torch_model.sample_inputs()
130
+
131
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
132
+
133
+ # Compile model on a specific device
134
+ compile_job = hub.submit_compile_job(
135
+ model=pt_model,
136
+ device=device,
137
+ input_specs=torch_model.get_input_spec(),
138
+ )
139
+
140
+ # Get target model to run on-device
141
+ target_model = compile_job.get_target_model()
142
+
143
+ ```
144
+
145
+
146
+ Step 2: **Performance profiling on cloud-hosted device**
147
+
148
+ After compiling models from step 1. Models can be profiled model on-device using the
149
+ `target_model`. Note that this scripts runs the model on a device automatically
150
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
151
+ provided job URL to view a variety of on-device performance metrics.
152
+ ```python
153
+ profile_job = hub.submit_profile_job(
154
+ model=target_model,
155
+ device=device,
156
+ )
157
+
158
+ ```
159
+
160
+ Step 3: **Verify on-device accuracy**
161
+
162
+ To verify the accuracy of the model on-device, you can run on-device inference
163
+ on sample input data on the same cloud hosted device.
164
+ ```python
165
+ input_data = torch_model.sample_inputs()
166
+ inference_job = hub.submit_inference_job(
167
+ model=target_model,
168
+ device=device,
169
+ inputs=input_data,
170
+ )
171
+
172
+ on_device_output = inference_job.download_output_data()
173
+
174
+ ```
175
+ With the output of the model, you can compute like PSNR, relative errors or
176
+ spot check the output with expected output.
177
+
178
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
179
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
180
+
181
+
182
+ ## Run demo on a cloud-hosted device
183
+
184
+ You can also run the demo on-device.
185
+
186
+ ```bash
187
+ python -m qai_hub_models.models.midas.demo --on-device
188
+ ```
189
+
190
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
191
+ environment, please add the following to your cell (instead of the above).
192
+ ```
193
+ %run -m qai_hub_models.models.midas.demo -- --on-device
194
+ ```
195
+
196
+
197
+ ## Deploying compiled model to Android
198
+
199
+
200
+ The models can be deployed using multiple runtimes:
201
+ - TensorFlow Lite (`.tflite` export): [This
202
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
203
+ guide to deploy the .tflite model in an Android application.
204
+
205
+
206
+ - QNN (`.so` export ): This [sample
207
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
208
+ provides instructions on how to use the `.so` shared library in an Android application.
209
+
210
+
211
+ ## View on Qualcomm® AI Hub
212
+ Get more details on Midas-V2's performance across various devices [here](https://aihub.qualcomm.com/models/midas).
213
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
214
+
215
+ ## License
216
+ - The license for the original implementation of Midas-V2 can be found
217
+ [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
218
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
219
+
220
+ ## References
221
+ * [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
222
+ * [Source Model Implementation](https://github.com/isl-org/MiDaS)
223
+
224
+ ## Community
225
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
226
+ * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
227
+
228
+