|
import numpy as np |
|
|
|
|
|
def edge2mat(link, num_node): |
|
A = np.zeros((num_node, num_node)) |
|
for i, j in link: |
|
A[j, i] = 1 |
|
return A |
|
|
|
|
|
def normalize_digraph(A): |
|
Dl = np.sum(A, 0) |
|
h, w = A.shape |
|
Dn = np.zeros((w, w)) |
|
for i in range(w): |
|
if Dl[i] > 0: |
|
Dn[i, i] = Dl[i] ** (-1) |
|
AD = np.dot(A, Dn) |
|
return AD |
|
|
|
|
|
def get_spatial_graph(num_node, self_link, inward, outward): |
|
I = edge2mat(self_link, num_node) |
|
In = normalize_digraph(edge2mat(inward, num_node)) |
|
Out = normalize_digraph(edge2mat(outward, num_node)) |
|
A = np.stack((I, In, Out)) |
|
return A |
|
|
|
|
|
import numpy as np |
|
|
|
def get_sgp_mat(num_in, num_out, link): |
|
A = np.zeros((num_in, num_out)) |
|
for i, j in link: |
|
A[i, j] = 1 |
|
A_norm = A / np.sum(A, axis=0, keepdims=True) |
|
return A_norm |
|
|
|
def edge2mat(link, num_node): |
|
A = np.zeros((num_node, num_node)) |
|
for i, j in link: |
|
A[j, i] = 1 |
|
return A |
|
|
|
def get_k_scale_graph(scale, A): |
|
if scale == 1: |
|
return A |
|
An = np.zeros_like(A) |
|
A_power = np.eye(A.shape[0]) |
|
for k in range(scale): |
|
A_power = A_power @ A |
|
An += A_power |
|
An[An > 0] = 1 |
|
return An |
|
|
|
def normalize_digraph(A): |
|
Dl = np.sum(A, 0) |
|
h, w = A.shape |
|
Dn = np.zeros((w, w)) |
|
for i in range(w): |
|
if Dl[i] > 0: |
|
Dn[i, i] = Dl[i] ** (-1) |
|
AD = np.dot(A, Dn) |
|
return AD |
|
|
|
|
|
def get_spatial_graph(num_node, self_link, inward, outward): |
|
I = edge2mat(self_link, num_node) |
|
In = normalize_digraph(edge2mat(inward, num_node)) |
|
Out = normalize_digraph(edge2mat(outward, num_node)) |
|
A = np.stack((I, In, Out)) |
|
return A |
|
|
|
def normalize_adjacency_matrix(A): |
|
node_degrees = A.sum(-1) |
|
degs_inv_sqrt = np.power(node_degrees, -0.5) |
|
norm_degs_matrix = np.eye(len(node_degrees)) * degs_inv_sqrt |
|
return (norm_degs_matrix @ A @ norm_degs_matrix).astype(np.float32) |
|
|
|
|
|
def k_adjacency(A, k, with_self=False, self_factor=1): |
|
assert isinstance(A, np.ndarray) |
|
I = np.eye(len(A), dtype=A.dtype) |
|
if k == 0: |
|
return I |
|
Ak = np.minimum(np.linalg.matrix_power(A + I, k), 1) \ |
|
- np.minimum(np.linalg.matrix_power(A + I, k - 1), 1) |
|
if with_self: |
|
Ak += (self_factor * I) |
|
return Ak |
|
|
|
def get_multiscale_spatial_graph(num_node, self_link, inward, outward): |
|
I = edge2mat(self_link, num_node) |
|
A1 = edge2mat(inward, num_node) |
|
A2 = edge2mat(outward, num_node) |
|
A3 = k_adjacency(A1, 2) |
|
A4 = k_adjacency(A2, 2) |
|
A1 = normalize_digraph(A1) |
|
A2 = normalize_digraph(A2) |
|
A3 = normalize_digraph(A3) |
|
A4 = normalize_digraph(A4) |
|
A = np.stack((I, A1, A2, A3, A4)) |
|
return A |
|
|
|
def get_adjacency_matrix(edges, num_nodes): |
|
A = np.zeros((num_nodes, num_nodes), dtype=np.float32) |
|
for edge in edges: |
|
A[edge] = 1. |
|
return A |
|
|
|
def get_uniform_graph(num_node, self_link, neighbor): |
|
A = normalize_digraph(edge2mat(neighbor + self_link, num_node)) |
|
return A |
|
|